Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 #ifndef G4INCLClusteringModelIntercomparison_h 38 #ifndef G4INCLClusteringModelIntercomparison_hh 39 #define G4INCLClusteringModelIntercomparison_h 39 #define G4INCLClusteringModelIntercomparison_hh 1 40 40 41 #ifdef INCLXX_IN_GEANT4_MODE 41 #ifdef INCLXX_IN_GEANT4_MODE 42 #define INCL_CACHING_CLUSTERING_MODEL_INTERCOM 42 #define INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set 1 43 #endif // INCLXX_IN_GEANT4_MODE 43 #endif // INCLXX_IN_GEANT4_MODE 44 44 45 #include "G4INCLIClusteringModel.hh" 45 #include "G4INCLIClusteringModel.hh" 46 #include "G4INCLParticle.hh" 46 #include "G4INCLParticle.hh" 47 #include "G4INCLParticleTable.hh" 47 #include "G4INCLParticleTable.hh" 48 #include "G4INCLCluster.hh" 48 #include "G4INCLCluster.hh" 49 #include "G4INCLNucleus.hh" 49 #include "G4INCLNucleus.hh" 50 #include "G4INCLKinematicsUtils.hh" 50 #include "G4INCLKinematicsUtils.hh" 51 #include "G4INCLHashing.hh" 51 #include "G4INCLHashing.hh" 52 52 53 #include <set> 53 #include <set> 54 #include <algorithm> 54 #include <algorithm> 55 55 56 namespace G4INCL { 56 namespace G4INCL { 57 57 58 /** \brief Container for the relevant inform 58 /** \brief Container for the relevant information 59 * 59 * 60 * This struct contains all the information 60 * This struct contains all the information that is relevant for the 61 * clustering algorithm. It is probably more 61 * clustering algorithm. It is probably more compact than the Particles it 62 * feeds on, hopefully improving cache perfo 62 * feeds on, hopefully improving cache performance. 63 */ 63 */ 64 struct ConsideredPartner { 64 struct ConsideredPartner { 65 Particle *particle; 65 Particle *particle; 66 G4bool isTargetSpectator; 66 G4bool isTargetSpectator; 67 G4int Z; 67 G4int Z; 68 G4int S; 68 G4int S; 69 ThreeVector position; 69 ThreeVector position; 70 ThreeVector momentum; 70 ThreeVector momentum; 71 G4double energy; 71 G4double energy; 72 G4double potentialEnergy; 72 G4double potentialEnergy; 73 73 74 ConsideredPartner() : 74 ConsideredPartner() : 75 particle(NULL), 75 particle(NULL), 76 isTargetSpectator(false), 76 isTargetSpectator(false), 77 Z(0), 77 Z(0), 78 S(0), 78 S(0), 79 energy(0.), 79 energy(0.), 80 potentialEnergy(0.) 80 potentialEnergy(0.) 81 {} 81 {} 82 82 83 ConsideredPartner(Particle * const p) : 83 ConsideredPartner(Particle * const p) : 84 particle(p), 84 particle(p), 85 isTargetSpectator(particle->isTargetSpec 85 isTargetSpectator(particle->isTargetSpectator()), 86 Z(particle->getZ()), 86 Z(particle->getZ()), 87 S(particle->getS()), 87 S(particle->getS()), 88 position(particle->getPosition()), 88 position(particle->getPosition()), 89 momentum(particle->getMomentum()), 89 momentum(particle->getMomentum()), 90 energy(particle->getEnergy()), 90 energy(particle->getEnergy()), 91 potentialEnergy(particle->getPotentialEn 91 potentialEnergy(particle->getPotentialEnergy()) 92 {} 92 {} 93 }; 93 }; 94 94 95 /// \brief Cluster coalescence algorithm use 95 /// \brief Cluster coalescence algorithm used in the IAEA intercomparison 96 class ClusteringModelIntercomparison : publi 96 class ClusteringModelIntercomparison : public IClusteringModel { 97 public: 97 public: 98 ClusteringModelIntercomparison(Config cons 98 ClusteringModelIntercomparison(Config const * const theConfig) : 99 theNucleus(NULL), 99 theNucleus(NULL), 100 selectedA(0), 100 selectedA(0), 101 selectedZ(0), 101 selectedZ(0), 102 selectedS(0), 102 selectedS(0), 103 sqtot(0.), 103 sqtot(0.), 104 cascadingEnergyPool(0.), 104 cascadingEnergyPool(0.), 105 protonMass(ParticleTable::getRealMass(Pr 105 protonMass(ParticleTable::getRealMass(Proton)), 106 neutronMass(ParticleTable::getRealMass(N 106 neutronMass(ParticleTable::getRealMass(Neutron)), 107 lambdaMass(ParticleTable::getRealMass(La 107 lambdaMass(ParticleTable::getRealMass(Lambda)), 108 runningMaxClusterAlgorithmMass(theConfig 108 runningMaxClusterAlgorithmMass(theConfig->getClusterMaxMass()), 109 nConsideredMax(0), 109 nConsideredMax(0), 110 nConsidered(0), 110 nConsidered(0), 111 consideredPartners(NULL), 111 consideredPartners(NULL), 112 isInRunningConfiguration(NULL), 112 isInRunningConfiguration(NULL), 113 maxMassConfigurationSkipping(ParticleTab 113 maxMassConfigurationSkipping(ParticleTable::maxClusterMass) 114 { 114 { 115 // Set up the maximum charge and neutron 115 // Set up the maximum charge and neutron number for clusters 116 clusterZMaxAll = 0; 116 clusterZMaxAll = 0; 117 clusterNMaxAll = 0; 117 clusterNMaxAll = 0; 118 for(G4int A=0; A<=runningMaxClusterAlgor 118 for(G4int A=0; A<=runningMaxClusterAlgorithmMass; ++A) { 119 if(clusterZMax[A]>clusterZMaxAll) 119 if(clusterZMax[A]>clusterZMaxAll) 120 clusterZMaxAll = clusterZMax[A]; 120 clusterZMaxAll = clusterZMax[A]; 121 if(A-clusterZMin[A]>clusterNMaxAll) 121 if(A-clusterZMin[A]>clusterNMaxAll) 122 clusterNMaxAll = A-clusterZMin[A]; 122 clusterNMaxAll = A-clusterZMin[A]; 123 } 123 } 124 std::fill(candidateConfiguration, 124 std::fill(candidateConfiguration, 125 candidateConfiguration + Parti 125 candidateConfiguration + ParticleTable::maxClusterMass, 126 static_cast<Particle*>(NULL)); 126 static_cast<Particle*>(NULL)); 127 127 128 std::fill(runningEnergies, 128 std::fill(runningEnergies, 129 runningEnergies + ParticleTabl 129 runningEnergies + ParticleTable::maxClusterMass, 130 0.0); 130 0.0); 131 131 132 std::fill(runningPotentials, 132 std::fill(runningPotentials, 133 runningPotentials + ParticleTa 133 runningPotentials + ParticleTable::maxClusterMass, 134 0.0); 134 0.0); 135 135 136 std::fill(runningConfiguration, 136 std::fill(runningConfiguration, 137 runningConfiguration + Particl 137 runningConfiguration + ParticleTable::maxClusterMass, 138 -1); 138 -1); 139 139 140 } 140 } 141 141 142 virtual ~ClusteringModelIntercomparison() 142 virtual ~ClusteringModelIntercomparison() { 143 delete [] consideredPartners; 143 delete [] consideredPartners; 144 delete [] isInRunningConfiguration; 144 delete [] isInRunningConfiguration; 145 } 145 } 146 146 147 virtual Cluster* getCluster(Nucleus*, Part 147 virtual Cluster* getCluster(Nucleus*, Particle*); 148 virtual G4bool clusterCanEscape(Nucleus co 148 virtual G4bool clusterCanEscape(Nucleus const * const, Cluster const * const); 149 149 150 private: 150 private: 151 void findClusterStartingFrom(const G4int o 151 void findClusterStartingFrom(const G4int oldA, const G4int oldZ, const G4int oldS); 152 G4double getPhaseSpace(const G4int oldA, C 152 G4double getPhaseSpace(const G4int oldA, ConsideredPartner const &p); 153 153 154 Nucleus *theNucleus; 154 Nucleus *theNucleus; 155 155 156 G4double runningEnergies[ParticleTable::ma 156 G4double runningEnergies[ParticleTable::maxClusterMass+1]; 157 ThreeVector runningMomenta[ParticleTable:: 157 ThreeVector runningMomenta[ParticleTable::maxClusterMass+1]; 158 ThreeVector runningPositions[ParticleTable 158 ThreeVector runningPositions[ParticleTable::maxClusterMass+1]; 159 G4double runningPotentials[ParticleTable:: 159 G4double runningPotentials[ParticleTable::maxClusterMass+1]; 160 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTE 160 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_HashMask) 161 Hashing::NucleonItem runningConfiguration[ 161 Hashing::NucleonItem runningConfiguration[ParticleTable::maxClusterMass]; 162 #elif defined(INCL_CACHING_CLUSTERING_MODEL_IN 162 #elif defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set) || defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_None) 163 G4int runningConfiguration[ParticleTable:: 163 G4int runningConfiguration[ParticleTable::maxClusterMass]; 164 #else 164 #else 165 #error Unrecognized INCL_CACHING_CLUSTERING_MO 165 #error Unrecognized INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON. Allowed values are: Set, HashMask, None. 166 #endif 166 #endif 167 167 168 G4int selectedA, selectedZ, selectedS; 168 G4int selectedA, selectedZ, selectedS; 169 G4double sqtot; 169 G4double sqtot; 170 170 171 G4int clusterZMaxAll, clusterNMaxAll; 171 G4int clusterZMaxAll, clusterNMaxAll; 172 172 173 G4double cascadingEnergyPool; 173 G4double cascadingEnergyPool; 174 174 175 /// \brief Lower limit of Z for cluster of 175 /// \brief Lower limit of Z for cluster of mass A 176 static const G4int clusterZMin[ParticleTab 176 static const G4int clusterZMin[ParticleTable::maxClusterMass+1]; 177 /// \brief Upper limit of Z for cluster of 177 /// \brief Upper limit of Z for cluster of mass A 178 static const G4int clusterZMax[ParticleTab 178 static const G4int clusterZMax[ParticleTable::maxClusterMass+1]; 179 179 180 /// \brief Precomputed factor 1.0/A 180 /// \brief Precomputed factor 1.0/A 181 static const G4double clusterPosFact[Parti 181 static const G4double clusterPosFact[ParticleTable::maxClusterMass+1]; 182 182 183 /// \brief Precomputed factor (1.0/A)^2 183 /// \brief Precomputed factor (1.0/A)^2 184 static const G4double clusterPosFact2[Part 184 static const G4double clusterPosFact2[ParticleTable::maxClusterMass+1]; 185 185 186 /// \brief Phase-space parameters for clus 186 /// \brief Phase-space parameters for cluster formation 187 static const G4double clusterPhaseSpaceCut 187 static const G4double clusterPhaseSpaceCut[ParticleTable::maxClusterMass+1]; 188 188 189 static const G4double limitCosEscapeAngle; 189 static const G4double limitCosEscapeAngle; 190 190 191 const G4double protonMass; 191 const G4double protonMass; 192 const G4double neutronMass; 192 const G4double neutronMass; 193 const G4double lambdaMass; 193 const G4double lambdaMass; 194 194 195 G4int runningMaxClusterAlgorithmMass; 195 G4int runningMaxClusterAlgorithmMass; 196 196 197 G4int nConsideredMax; 197 G4int nConsideredMax; 198 G4int nConsidered; 198 G4int nConsidered; 199 199 200 /** \brief Array of considered cluster par 200 /** \brief Array of considered cluster partners 201 * 201 * 202 * A dynamical array of ConsideredPartner 202 * A dynamical array of ConsideredPartner objects is allocated on this 203 * variable and filled with pointers to nu 203 * variable and filled with pointers to nucleons which are eligible for 204 * clustering. We used to use a ParticleLi 204 * clustering. We used to use a ParticleList for this purpose, but this 205 * made it very cumbersome to check whethe 205 * made it very cumbersome to check whether nucleons had already been 206 * included in the running configuration. 206 * included in the running configuration. Using an array of Particle* 207 * coupled with a boolean mask (\see{isInR 207 * coupled with a boolean mask (\see{isInRunningConfiguration}) reduces the 208 * overhead by a large amount. Running ti 208 * overhead by a large amount. Running times for 1-GeV p+Pb208 went down 209 * by almost 30% (!). 209 * by almost 30% (!). 210 * 210 * 211 * Lesson learnt: when you need speed, not 211 * Lesson learnt: when you need speed, nothing beats a good ol' array. 212 */ 212 */ 213 ConsideredPartner *consideredPartners; 213 ConsideredPartner *consideredPartners; 214 214 215 /** \brief Array of flags for nucleons in 215 /** \brief Array of flags for nucleons in the running configuration 216 * 216 * 217 * Clustering partners that are already us 217 * Clustering partners that are already used in the running cluster 218 * configuration are flagged as "true" in 218 * configuration are flagged as "true" in this array. 219 */ 219 */ 220 G4bool *isInRunningConfiguration; 220 G4bool *isInRunningConfiguration; 221 221 222 /** \brief Best cluster configuration 222 /** \brief Best cluster configuration 223 * 223 * 224 * This array contains pointers to the nuc 224 * This array contains pointers to the nucleons which make up the best 225 * cluster configuration that has been fou 225 * cluster configuration that has been found so far. 226 */ 226 */ 227 Particle *candidateConfiguration[ParticleT 227 Particle *candidateConfiguration[ParticleTable::maxClusterMass]; 228 228 229 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTE 229 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_HashMask) 230 typedef std::set<Hashing::HashType> HashCo 230 typedef std::set<Hashing::HashType> HashContainer; 231 typedef HashContainer::iterator HashIterat 231 typedef HashContainer::iterator HashIterator; 232 232 233 /// \brief Array of containers for configu 233 /// \brief Array of containers for configurations that have already been checked 234 HashContainer checkedConfigurations[Partic 234 HashContainer checkedConfigurations[ParticleTable::maxClusterMass-2]; 235 #elif defined(INCL_CACHING_CLUSTERING_MODEL_IN 235 #elif defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_Set) 236 /** \brief Class for storing and comparing 236 /** \brief Class for storing and comparing sorted nucleon configurations 237 * 237 * 238 * This class is actually just a wrapper a 238 * This class is actually just a wrapper around an array of Particle* 239 * pointers. It provides a lexicographical 239 * pointers. It provides a lexicographical comparison operator 240 * (SortedNucleonConfiguration::operator<) 240 * (SortedNucleonConfiguration::operator<) for inclusion in std::set 241 * containers. 241 * containers. 242 */ 242 */ 243 class SortedNucleonConfiguration { 243 class SortedNucleonConfiguration { 244 public: 244 public: 245 // Use Particle* as nucleon identifier 245 // Use Particle* as nucleon identifiers 246 typedef G4int NucleonItem; 246 typedef G4int NucleonItem; 247 247 248 /// \brief Constructor 248 /// \brief Constructor 249 SortedNucleonConfiguration() : theSize 249 SortedNucleonConfiguration() : theSize(0), nucleons(NULL) {} 250 250 251 /// \brief Copy constructor 251 /// \brief Copy constructor 252 SortedNucleonConfiguration(const Sorte 252 SortedNucleonConfiguration(const SortedNucleonConfiguration &rhs) : 253 theSize(rhs.theSize), 253 theSize(rhs.theSize), 254 nucleons(new NucleonItem[theSize]) 254 nucleons(new NucleonItem[theSize]) 255 { 255 { 256 std::copy(rhs.nucleons, rhs.nucleons+t 256 std::copy(rhs.nucleons, rhs.nucleons+theSize, nucleons); 257 } 257 } 258 258 259 /// \brief Destructor 259 /// \brief Destructor 260 ~SortedNucleonConfiguration() { 260 ~SortedNucleonConfiguration() { 261 delete [] nucleons; 261 delete [] nucleons; 262 } 262 } 263 263 264 /// \brief Helper method for the assig 264 /// \brief Helper method for the assignment operator 265 void swap(SortedNucleonConfiguration & 265 void swap(SortedNucleonConfiguration &rhs) { 266 std::swap(theSize, rhs.theSize); 266 std::swap(theSize, rhs.theSize); 267 std::swap(nucleons, rhs.nucleons); 267 std::swap(nucleons, rhs.nucleons); 268 } 268 } 269 269 270 /// \brief Assignment operator 270 /// \brief Assignment operator 271 SortedNucleonConfiguration &operator=( 271 SortedNucleonConfiguration &operator=(const SortedNucleonConfiguration &rhs) { 272 SortedNucleonConfiguration tempConfi 272 SortedNucleonConfiguration tempConfig(rhs); 273 swap(tempConfig); 273 swap(tempConfig); 274 return *this; 274 return *this; 275 } 275 } 276 276 277 /** \brief Order operator for SortedNu 277 /** \brief Order operator for SortedNucleonConfiguration 278 * 278 * 279 * The comparison is done lexicographi 279 * The comparison is done lexicographically (i.e. from the first 280 * element to the last). 280 * element to the last). 281 */ 281 */ 282 G4bool operator<(const SortedNucleonCo 282 G4bool operator<(const SortedNucleonConfiguration &rhs) const { 283 // assert(theSize==rhs.theSize); 283 // assert(theSize==rhs.theSize); 284 return std::lexicographical_compare( 284 return std::lexicographical_compare(nucleons, nucleons+theSize, rhs.nucleons, rhs.nucleons+theSize); 285 } 285 } 286 286 287 /// \brief Fill configuration with arr 287 /// \brief Fill configuration with array of NucleonItem 288 void fill(NucleonItem *config, size_t 288 void fill(NucleonItem *config, size_t n) { 289 theSize = n; 289 theSize = n; 290 nucleons = new NucleonItem[theSize]; 290 nucleons = new NucleonItem[theSize]; 291 std::copy(config, config+theSize, nu 291 std::copy(config, config+theSize, nucleons); 292 std::sort(nucleons, nucleons+theSize 292 std::sort(nucleons, nucleons+theSize); 293 } 293 } 294 294 295 private: 295 private: 296 /// \brief Size of the array 296 /// \brief Size of the array 297 size_t theSize; 297 size_t theSize; 298 298 299 /// \brief The real array 299 /// \brief The real array 300 NucleonItem *nucleons; 300 NucleonItem *nucleons; 301 }; 301 }; 302 302 303 typedef std::set<SortedNucleonConfiguratio 303 typedef std::set<SortedNucleonConfiguration> SortedNucleonConfigurationContainer; 304 typedef SortedNucleonConfigurationContaine 304 typedef SortedNucleonConfigurationContainer::iterator SortedNucleonConfigurationIterator; 305 305 306 /// \brief Array of containers for configu 306 /// \brief Array of containers for configurations that have already been checked 307 SortedNucleonConfigurationContainer checke 307 SortedNucleonConfigurationContainer checkedConfigurations[ParticleTable::maxClusterMass-2]; 308 #elif !defined(INCL_CACHING_CLUSTERING_MODEL_I 308 #elif !defined(INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON_None) 309 #error Unrecognized INCL_CACHING_CLUSTERING_MO 309 #error Unrecognized INCL_CACHING_CLUSTERING_MODEL_INTERCOMPARISON. Allowed values are: Set, HashMask, None. 310 #endif 310 #endif 311 311 312 /** \brief Maximum mass for configuration 312 /** \brief Maximum mass for configuration storage 313 * 313 * 314 * Skipping configurations becomes ineffic 314 * Skipping configurations becomes inefficient above this mass. 315 */ 315 */ 316 G4int maxMassConfigurationSkipping; 316 G4int maxMassConfigurationSkipping; 317 }; 317 }; 318 318 319 } 319 } 320 320 321 #endif 321 #endif 322 322