Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/im_r_matrix/src/G4VScatteringCollision.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/im_r_matrix/src/G4VScatteringCollision.cc (Version 11.3.0) and /processes/hadronic/models/im_r_matrix/src/G4VScatteringCollision.cc (Version 7.1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // @hpw@ misses the sampling of two breit wign     23 // @hpw@ misses the sampling of two breit wigner in a corelated fashion, 
 27 // @hpw@ to be usefull for resonance resonance     24 // @hpw@ to be usefull for resonance resonance scattering.
 28                                                    25 
 29 #include <typeinfo>                                26 #include <typeinfo>
 30                                                << 
 31 #include "globals.hh"                              27 #include "globals.hh"
 32 #include "G4SystemOfUnits.hh"                  << 
 33 #include "G4VScatteringCollision.hh"               28 #include "G4VScatteringCollision.hh"
 34 #include "G4KineticTrack.hh"                       29 #include "G4KineticTrack.hh"
 35 #include "G4VCrossSectionSource.hh"                30 #include "G4VCrossSectionSource.hh"
 36 #include "G4Proton.hh"                             31 #include "G4Proton.hh"
 37 #include "G4Neutron.hh"                            32 #include "G4Neutron.hh"
 38 #include "G4XNNElastic.hh"                         33 #include "G4XNNElastic.hh"
 39 #include "G4AngularDistribution.hh"                34 #include "G4AngularDistribution.hh"
 40 #include "G4ThreeVector.hh"                        35 #include "G4ThreeVector.hh"
 41 #include "G4LorentzVector.hh"                      36 #include "G4LorentzVector.hh"
 42 #include "G4LorentzRotation.hh"                    37 #include "G4LorentzRotation.hh"
 43 #include "G4KineticTrackVector.hh"                 38 #include "G4KineticTrackVector.hh"
 44 #include "Randomize.hh"                            39 #include "Randomize.hh"
 45 #include "G4PionPlus.hh"                           40 #include "G4PionPlus.hh"
 46                                                    41 
 47 G4VScatteringCollision::G4VScatteringCollision     42 G4VScatteringCollision::G4VScatteringCollision()
 48 {                                                  43 { 
 49   theAngularDistribution = new G4AngularDistri     44   theAngularDistribution = new G4AngularDistribution(true);
 50 }                                                  45 }
 51                                                    46 
 52                                                    47 
 53 G4VScatteringCollision::~G4VScatteringCollisio     48 G4VScatteringCollision::~G4VScatteringCollision()
 54 {                                                  49 { 
 55   delete theAngularDistribution;                   50   delete theAngularDistribution;
 56   theAngularDistribution=0;                    << 
 57 }                                                  51 }
 58                                                    52 
 59                                                    53 
 60 G4KineticTrackVector* G4VScatteringCollision::     54 G4KineticTrackVector* G4VScatteringCollision::FinalState(const G4KineticTrack& trk1, 
 61                   const G4KineticTrack& trk2)      55                   const G4KineticTrack& trk2) const
 62 {                                                  56 { 
 63   const G4VAngularDistribution* angDistributio     57   const G4VAngularDistribution* angDistribution = GetAngularDistribution();
 64   G4LorentzVector p = trk1.Get4Momentum() + tr     58   G4LorentzVector p = trk1.Get4Momentum() + trk2.Get4Momentum();
 65   G4double sqrtS = p.m();                          59   G4double sqrtS = p.m();
 66   G4double S = sqrtS * sqrtS;                  <<  60   G4double s = sqrtS * sqrtS;
                                                   >>  61 
                                                   >>  62   G4double m1 = trk1.GetActualMass();
                                                   >>  63   G4double m2 = trk2.GetActualMass();
 67                                                    64 
 68   std::vector<const G4ParticleDefinition*> Out     65   std::vector<const G4ParticleDefinition*> OutputDefinitions = GetOutgoingParticles();
 69   if (OutputDefinitions.size() != 2)               66   if (OutputDefinitions.size() != 2)
 70     throw G4HadronicException(__FILE__, __LINE     67     throw G4HadronicException(__FILE__, __LINE__, "G4VScatteringCollision: Too many output particles!");
 71                                                    68 
 72   if (OutputDefinitions[0]->IsShortLived() &&      69   if (OutputDefinitions[0]->IsShortLived() && OutputDefinitions[1]->IsShortLived())
 73   {                                                70   {
 74     if(std::getenv("G4KCDEBUG")) G4cerr << "tw <<  71     if(getenv("G4KCDEBUG")) G4cerr << "two shortlived for Type = "<<typeid(*this).name()<<G4endl;
 75     // throw G4HadronicException(__FILE__, __L     72     // throw G4HadronicException(__FILE__, __LINE__, "G4VScatteringCollision: can't handle two shortlived particles!"); // @hpw@
 76   }                                                73   }
 77                                                    74   
 78   G4double outm1 = OutputDefinitions[0]->GetPD     75   G4double outm1 = OutputDefinitions[0]->GetPDGMass();
 79   G4double outm2 = OutputDefinitions[1]->GetPD     76   G4double outm2 = OutputDefinitions[1]->GetPDGMass();
 80                                                    77 
 81   if (OutputDefinitions[0]->IsShortLived())        78   if (OutputDefinitions[0]->IsShortLived())
 82   {                                                79   {
 83     outm1 = SampleResonanceMass(outm1,             80     outm1 = SampleResonanceMass(outm1, 
 84                 OutputDefinitions[0]->GetPDGWi     81                 OutputDefinitions[0]->GetPDGWidth(),
 85     G4Neutron::NeutronDefinition()->GetPDGMass     82     G4Neutron::NeutronDefinition()->GetPDGMass()+G4PionPlus::PionPlus()->GetPDGMass(),
 86     sqrtS-(G4Neutron::NeutronDefinition()->Get     83     sqrtS-(G4Neutron::NeutronDefinition()->GetPDGMass()+G4PionPlus::PionPlus()->GetPDGMass()));
 87                                                    84 
 88   }                                                85   }
 89   if (OutputDefinitions[1]->IsShortLived())        86   if (OutputDefinitions[1]->IsShortLived())
 90   {                                                87   {
 91     outm2 = SampleResonanceMass(outm2, OutputD     88     outm2 = SampleResonanceMass(outm2, OutputDefinitions[1]->GetPDGWidth(),
 92       G4Neutron::NeutronDefinition()->GetPDGMa     89       G4Neutron::NeutronDefinition()->GetPDGMass()+G4PionPlus::PionPlus()->GetPDGMass(),
 93       sqrtS-outm1);                                90       sqrtS-outm1);
 94   }                                                91   }
 95                                                    92   
 96   // Angles of outgoing particles                  93   // Angles of outgoing particles
 97   G4double cosTheta = angDistribution->CosThet <<  94   G4double cosTheta = angDistribution->CosTheta(s,m1,m2);
 98   G4double phi = angDistribution->Phi();           95   G4double phi = angDistribution->Phi();
 99                                                    96 
100   // Unit vector of three-momentum                 97   // Unit vector of three-momentum
101   G4LorentzRotation fromCMSFrame(p.boostVector     98   G4LorentzRotation fromCMSFrame(p.boostVector());
102   G4LorentzRotation toCMSFrame(fromCMSFrame.in     99   G4LorentzRotation toCMSFrame(fromCMSFrame.inverse());
103   G4LorentzVector TempPtr = toCMSFrame*trk1.Ge    100   G4LorentzVector TempPtr = toCMSFrame*trk1.Get4Momentum();
104   G4LorentzRotation toZ;                          101   G4LorentzRotation toZ;
105   toZ.rotateZ(-1*TempPtr.phi());                  102   toZ.rotateZ(-1*TempPtr.phi());
106   toZ.rotateY(-1*TempPtr.theta());                103   toZ.rotateY(-1*TempPtr.theta());
107   G4LorentzRotation toCMS(toZ.inverse());         104   G4LorentzRotation toCMS(toZ.inverse());
108                                                   105 
109   G4ThreeVector pFinal1(std::sin(std::acos(cos    106   G4ThreeVector pFinal1(std::sin(std::acos(cosTheta))*std::cos(phi), std::sin(std::acos(cosTheta))*std::sin(phi), cosTheta);
110                                                   107 
111   // Three momentum in cm system                  108   // Three momentum in cm system
112   G4double pCM = std::sqrt( (S-(outm1+outm2)*( << 109   G4double pCM = std::sqrt( (s-(outm1+outm2)*(outm1+outm2)) * (s-(outm1-outm2)*(outm1-outm2)) /(4.*s));
113   pFinal1 = pFinal1 * pCM;                        110   pFinal1 = pFinal1 * pCM;
114   G4ThreeVector pFinal2 = -pFinal1;               111   G4ThreeVector pFinal2 = -pFinal1;
115                                                   112 
116   G4double eFinal1 = std::sqrt(pFinal1.mag2()     113   G4double eFinal1 = std::sqrt(pFinal1.mag2() + outm1*outm1);
117   G4double eFinal2 = std::sqrt(pFinal2.mag2()     114   G4double eFinal2 = std::sqrt(pFinal2.mag2() + outm2*outm2);
118                                                   115 
119   G4LorentzVector p4Final1(pFinal1, eFinal1);     116   G4LorentzVector p4Final1(pFinal1, eFinal1);
120   G4LorentzVector p4Final2(pFinal2, eFinal2);     117   G4LorentzVector p4Final2(pFinal2, eFinal2);
121   p4Final1 = toCMS*p4Final1;                      118   p4Final1 = toCMS*p4Final1;
122   p4Final2 = toCMS*p4Final2;                      119   p4Final2 = toCMS*p4Final2;
123                                                   120 
124                                                   121 
125   // Lorentz transformation                       122   // Lorentz transformation
126   G4LorentzRotation toLabFrame(p.boostVector()    123   G4LorentzRotation toLabFrame(p.boostVector());
127   p4Final1 *= toLabFrame;                         124   p4Final1 *= toLabFrame;
128   p4Final2 *= toLabFrame;                         125   p4Final2 *= toLabFrame;
129                                                   126 
130   // Final tracks are copies of incoming ones,    127   // Final tracks are copies of incoming ones, with modified 4-momenta
131                                                   128 
132   G4double chargeBalance = OutputDefinitions[0    129   G4double chargeBalance = OutputDefinitions[0]->GetPDGCharge()+OutputDefinitions[1]->GetPDGCharge();
133   chargeBalance-= trk1.GetDefinition()->GetPDG    130   chargeBalance-= trk1.GetDefinition()->GetPDGCharge();
134   chargeBalance-= trk2.GetDefinition()->GetPDG    131   chargeBalance-= trk2.GetDefinition()->GetPDGCharge();
135   if(std::abs(chargeBalance) >.1)                 132   if(std::abs(chargeBalance) >.1)
136   {                                               133   {
137     G4cout << "Charges in "<<typeid(*this).nam    134     G4cout << "Charges in "<<typeid(*this).name()<<G4endl;
138     G4cout << OutputDefinitions[0]->GetPDGChar    135     G4cout << OutputDefinitions[0]->GetPDGCharge()<<" "<<OutputDefinitions[0]->GetParticleName()
139            << OutputDefinitions[1]->GetPDGChar    136            << OutputDefinitions[1]->GetPDGCharge()<<" "<<OutputDefinitions[1]->GetParticleName()
140      << trk1.GetDefinition()->GetPDGCharge()<<    137      << trk1.GetDefinition()->GetPDGCharge()<<" "<<trk1.GetDefinition()->GetParticleName()
141      << trk2.GetDefinition()->GetPDGCharge()<<    138      << trk2.GetDefinition()->GetPDGCharge()<<" "<<trk2.GetDefinition()->GetParticleName()<<G4endl;
142   }                                               139   }
143   G4KineticTrack* final1 = new G4KineticTrack( << 140   G4KineticTrack* final1 = new G4KineticTrack(const_cast<G4ParticleDefinition *>(OutputDefinitions[0]), 0.0,
144   G4KineticTrack* final2 = new G4KineticTrack( << 141                 trk1.GetPosition(), p4Final1);
                                                   >> 142   G4KineticTrack* final2 = new G4KineticTrack(const_cast<G4ParticleDefinition *>(OutputDefinitions[1]), 0.0,
                                                   >> 143                 trk2.GetPosition(), p4Final2);
145                                                   144 
146   G4KineticTrackVector* finalTracks = new G4Ki    145   G4KineticTrackVector* finalTracks = new G4KineticTrackVector;
147                                                   146 
148   finalTracks->push_back(final1);                 147   finalTracks->push_back(final1);
149   finalTracks->push_back(final2);                 148   finalTracks->push_back(final2);
150                                                   149 
151   return finalTracks;                             150   return finalTracks;
152 }                                                 151 }
153                                                   152 
154                                                   153 
155                                                   154 
156 double G4VScatteringCollision::SampleResonance    155 double G4VScatteringCollision::SampleResonanceMass(const double poleMass, 
157                const double gamma,                156                const double gamma,
158                const double aMinMass,             157                const double aMinMass,
159                const double maxMass) const        158                const double maxMass) const
160 {                                                 159 {
161   // Chooses a mass randomly between minMass a    160   // Chooses a mass randomly between minMass and maxMass 
162   //     according to a Breit-Wigner function     161   //     according to a Breit-Wigner function with constant 
163   //     width gamma and pole poleMass            162   //     width gamma and pole poleMass
164                                                   163 
165   G4double minMass = aMinMass;                    164   G4double minMass = aMinMass;
166   if (minMass > maxMass) G4cerr << "##########    165   if (minMass > maxMass) G4cerr << "##################### SampleResonanceMass: particle out of mass range" << G4endl;
167   if(minMass > maxMass) minMass -= G4PionPlus:    166   if(minMass > maxMass) minMass -= G4PionPlus::PionPlus()->GetPDGMass();
168   if(minMass > maxMass) minMass = 0;              167   if(minMass > maxMass) minMass = 0;
169                                                   168 
170   if (gamma < 1E-10*GeV)                          169   if (gamma < 1E-10*GeV)
171     return std::max(minMass,std::min(maxMass,     170     return std::max(minMass,std::min(maxMass, poleMass));
172   else {                                          171   else {
173     double fmin = BrWigInt0(minMass, gamma, po    172     double fmin = BrWigInt0(minMass, gamma, poleMass);
174     double fmax = BrWigInt0(maxMass, gamma, po    173     double fmax = BrWigInt0(maxMass, gamma, poleMass);
175     double f = fmin + (fmax-fmin)*G4UniformRan    174     double f = fmin + (fmax-fmin)*G4UniformRand();
176     return BrWigInv(f, gamma, poleMass);          175     return BrWigInv(f, gamma, poleMass);
177   }                                               176   }
178 }                                              << 
179                                                << 
180 void G4VScatteringCollision::establish_G4MT_TL << 
181 {                                              << 
182   establish_G4MT_TLS_G4VCollision();           << 
183   if ( theAngularDistribution ) delete theAngu << 
184   theAngularDistribution = new G4AngularDistri << 
185 }                                                 177 }
186                                                   178