Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/fission/src/G4LFission.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/fission/src/G4LFission.cc (Version 11.3.0) and /processes/hadronic/models/fission/src/G4LFission.cc (Version 6.2.p1)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 //                                                
 28 // G4 Model: Low Energy Fission                   
 29 // F.W. Jones, TRIUMF, 03-DEC-96                  
 30 //                                                
 31 // This is a prototype of a low-energy fission    
 32 // Currently it is based on the GHEISHA routin    
 33 // and conforms fairly closely to the original    
 34 // Note: energy is in MeV and momentum is in M    
 35 //                                                
 36 // use -scheme for elastic scattering: HPW, 20    
 37 // the code comes mostly from the old Low-ener    
 38 //                                                
 39 // 25-JUN-98 FWJ: replaced missing Initialize     
 40                                                   
 41 #include <iostream>                               
 42                                                   
 43 #include "G4LFission.hh"                          
 44 #include "globals.hh"                             
 45 #include "G4Exp.hh"                               
 46 #include "G4Log.hh"                               
 47 #include "G4Pow.hh"                               
 48 #include "G4PhysicalConstants.hh"                 
 49 #include "G4SystemOfUnits.hh"                     
 50 #include "Randomize.hh"                           
 51 #include "G4PhysicsModelCatalog.hh"               
 52                                                   
 53 G4LFission::G4LFission(const G4String& name)      
 54   : G4HadronicInteraction(name), secID(-1)        
 55 {                                                 
 56   init();                                         
 57   SetMinEnergy(0.0*GeV);                          
 58   SetMaxEnergy(DBL_MAX);                          
 59   G4PhysicsModelCatalog::GetModelID( "model_"     
 60 }                                                 
 61                                                   
 62                                                   
 63 G4LFission::~G4LFission()                         
 64 {                                                 
 65   theParticleChange.Clear();                      
 66 }                                                 
 67                                                   
 68                                                   
 69 void G4LFission::ModelDescription(std::ostream    
 70 {                                                 
 71   outFile << "G4LFission is one of the Low Ene    
 72           << "(LEP) models used to implement n    
 73           << "nuclei.  It is a re-engineered v    
 74           << "of H. Fesefeldt which emits neut    
 75           << "nuclear fragments.  The model is    
 76           << "neutron energies.\n";               
 77 }                                                 
 78                                                   
 79 void G4LFission::init()                           
 80 {                                                 
 81    G4int i;                                       
 82    G4double xx = 1. - 0.5;                        
 83    G4double xxx = std::sqrt(2.29*xx);             
 84    spneut[0] = G4Exp(-xx/0.965)*(G4Exp(xxx) -     
 85    for (i = 2; i <= 10; i++) {                    
 86       xx = i*1. - 0.5;                            
 87       xxx = std::sqrt(2.29*xx);                   
 88       spneut[i-1] = spneut[i-2] + G4Exp(-xx/0.    
 89    }                                              
 90    for (i = 1; i <= 10; i++) {                    
 91       spneut[i-1] = spneut[i-1]/spneut[9];        
 92       if (verboseLevel > 1) G4cout << "G4LFiss    
 93          " spneut=" << spneut[i-1] << G4endl;     
 94    }                                              
 95 }                                                 
 96                                                   
 97                                                   
 98 G4HadFinalState* G4LFission::ApplyYourself(con    
 99                                            G4N    
100 {                                                 
101   theParticleChange.Clear();                      
102   const G4HadProjectile* aParticle = &aTrack;     
103                                                   
104   G4double N = targetNucleus.GetA_asInt();        
105   G4double Z = targetNucleus.GetZ_asInt();        
106   theParticleChange.SetStatusChange(stopAndKil    
107                                                   
108   G4double P = aParticle->GetTotalMomentum()/M    
109   G4double Px = aParticle->Get4Momentum().vect    
110   G4double Py = aParticle->Get4Momentum().vect    
111   G4double Pz = aParticle->Get4Momentum().vect    
112   G4double E = aParticle->GetTotalEnergy()/MeV    
113   G4double E0 = aParticle->GetDefinition()->Ge    
114   G4double Q = aParticle->GetDefinition()->Get    
115   if (verboseLevel > 1) {                         
116       G4cout << "G4LFission:ApplyYourself: inc    
117       G4cout << "P      " << P << " MeV/c" <<     
118       G4cout << "Px     " << Px << " MeV/c" <<    
119       G4cout << "Py     " << Py << " MeV/c" <<    
120       G4cout << "Pz     " << Pz << " MeV/c" <<    
121       G4cout << "E      " << E << " MeV" << G4    
122       G4cout << "mass   " << E0 << " MeV" << G    
123       G4cout << "charge " << Q << G4endl;         
124   }                                               
125   // GHEISHA ADD operation to get total energy    
126    if (verboseLevel > 1) {                        
127       G4cout << "G4LFission:ApplyYourself: mat    
128       G4cout << "A      " << N << G4endl;         
129       G4cout << "Z      " << Z << G4endl;         
130       G4cout << "atomic mass " <<                 
131         Atomas(N, Z) << "MeV" << G4endl;          
132    }                                              
133   E = E + Atomas(N, Z);                           
134   G4double E02 = E*E - P*P;                       
135   E0 = std::sqrt(std::abs(E02));                  
136   if (E02 < 0) E0 = -E0;                          
137   Q = Q + Z;                                      
138   if (verboseLevel > 1) {                         
139       G4cout << "G4LFission:ApplyYourself: tot    
140       G4cout << "E      " << E << " MeV" << G4    
141       G4cout << "mass   " << E0 << " MeV" << G    
142       G4cout << "charge " << Q << G4endl;         
143   }                                               
144   Px = -Px;                                       
145   Py = -Py;                                       
146   Pz = -Pz;                                       
147                                                   
148   G4double e1 = aParticle->GetKineticEnergy()/    
149    if (e1 < 1.) e1 = 1.;                          
150                                                   
151 // Average number of neutrons                     
152    G4double avern = 2.569 + 0.559*G4Log(e1);      
153    G4bool photofission = 0;      // For now       
154 // Take the following value if photofission is    
155    if (!photofission) avern = 2.569 + 0.900*G4    
156                                                   
157 // Average number of gammas                       
158    G4double averg = 9.500 + 0.600*G4Log(e1);      
159                                                   
160    G4double ran = G4RandGauss::shoot();           
161 // Number of neutrons                             
162    G4int nn = static_cast<G4int>(avern + ran*1    
163    ran = G4RandGauss::shoot();                    
164 // Number of gammas                               
165    G4int ng = static_cast<G4int>(averg + ran*3    
166    if (nn < 1) nn = 1;                            
167    if (ng < 1) ng = 1;                            
168    G4double exn = 0.;                             
169    G4double exg = 0.;                             
170                                                   
171 // Make secondary neutrons and distribute kine    
172    G4DynamicParticle* aNeutron;                   
173    G4int i;                                       
174    for (i = 1; i <= nn; i++) {                    
175       ran = G4UniformRand();                      
176       G4int j;                                    
177       for (j = 1; j <= 10; j++) {                 
178          if (ran < spneut[j-1]) goto label12;     
179       }                                           
180       j = 10;                                     
181     label12:                                      
182       ran = G4UniformRand();                      
183       G4double ekin = (j - 1)*1. + ran;           
184       exn = exn + ekin;                           
185       aNeutron = new G4DynamicParticle(G4Neutr    
186                                        G4Parti    
187                                        ekin*Me    
188       theParticleChange.AddSecondary(aNeutron,    
189    }                                              
190                                                   
191 // Make secondary gammas and distribute kineti    
192    G4DynamicParticle* aGamma;                     
193    for (i = 1; i <= ng; i++) {                    
194       ran = G4UniformRand();                      
195       G4double ekin = -0.87*G4Log(ran);           
196       exg = exg + ekin;                           
197       aGamma = new G4DynamicParticle(G4Gamma::    
198                                      G4Particl    
199                                      ekin*MeV)    
200       theParticleChange.AddSecondary(aGamma, s    
201    }                                              
202                                                   
203 // Distribute momentum vectors and do Lorentz     
204                                                   
205    G4HadSecondary* theSecondary;                  
206                                                   
207    for (i = 1; i <= nn + ng; i++) {               
208       G4double ran1 = G4UniformRand();            
209       G4double ran2 = G4UniformRand();            
210       G4double cost = -1. + 2.*ran1;              
211       G4double sint = std::sqrt(std::abs(1. -     
212       G4double phi = ran2*twopi;                  
213       //      G4cout << ran1 << " " << ran2 <<    
214       //      G4cout << cost << " " << sint <<    
215       theSecondary = theParticleChange.GetSeco    
216       G4double pp = theSecondary->GetParticle(    
217       G4double px = pp*sint*std::sin(phi);        
218       G4double py = pp*sint*std::cos(phi);        
219       G4double pz = pp*cost;                      
220       //      G4cout << pp << G4endl;             
221       //      G4cout << px << " " << py << " "    
222       G4double e = theSecondary->GetParticle()    
223       G4double e0 = theSecondary->GetParticle(    
224                                                   
225       G4double a = px*Px + py*Py + pz*Pz;         
226       a = (a/(E + E0) - e)/E0;                    
227                                                   
228       px = px + a*Px;                             
229       py = py + a*Py;                             
230       pz = pz + a*Pz;                             
231       G4double p2 = px*px + py*py + pz*pz;        
232       pp = std::sqrt(p2);                         
233       e = std::sqrt(e0*e0 + p2);                  
234       G4double ekin = e - theSecondary->GetPar    
235       theSecondary->GetParticle()->SetMomentum    
236                                                   
237                                                   
238       theSecondary->GetParticle()->SetKineticE    
239    }                                              
240                                                   
241   return &theParticleChange;                      
242 }                                                 
243                                                   
244 // Computes atomic mass in MeV (translation of    
245 // Not optimized: conforms closely to original    
246                                                   
247 G4double G4LFission::Atomas(const G4double A,     
248 {                                                 
249   G4double rmel = G4Electron::ElectronDefiniti    
250   G4double rmp  = G4Proton::ProtonDefinition()    
251   G4double rmn  = G4Neutron::NeutronDefinition    
252   G4double rmd  = G4Deuteron::DeuteronDefiniti    
253   G4double rma  = G4Alpha::AlphaDefinition()->    
254                                                   
255   G4int ia = static_cast<G4int>(A + 0.5);         
256    if (ia < 1) return 0;                          
257    G4int iz = static_cast<G4int>(Z + 0.5);        
258    if (iz < 0) return 0;                          
259    if (iz > ia) return 0;                         
260                                                   
261    if (ia == 1) {                                 
262       if (iz == 0) return rmn;          //neut    
263       if (iz == 1) return rmp + rmel;   //Hydr    
264    }                                              
265    else if (ia == 2 && iz == 1) {                 
266       return rmd;                       //Deut    
267    }                                              
268    else if (ia == 4 && iz == 2) {                 
269       return rma;                       //Alph    
270    }                                              
271                                                   
272   G4Pow* Pow=G4Pow::GetInstance();                
273   G4double mass = (A - Z)*rmn + Z*rmp + Z*rmel    
274                   + 17.23*Pow->A23(A)             
275                   + 93.15*(A/2. - Z)*(A/2. - Z    
276                   + 0.6984523*Z*Z/Pow->A13(A);    
277   G4int ipp = (ia - iz)%2;                        
278   G4int izz = iz%2;                               
279   if (ipp == izz) mass = mass + (ipp + izz -1)    
280                                                   
281   return mass;                                    
282 }                                                 
283                                                   
284 const std::pair<G4double, G4double> G4LFission    
285 {                                                 
286   // max energy non-conservation is mass of he    
287   return std::pair<G4double, G4double>(10.0*pe    
288 }                                                 
289