Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/fission/src/G4FissionLibrary.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/fission/src/G4FissionLibrary.cc (Version 11.3.0) and /processes/hadronic/models/fission/src/G4FissionLibrary.cc (Version 11.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // This software was developed by Lawrence Liv     27 // This software was developed by Lawrence Livermore National Laboratory.
 28 //                                                 28 //
 29 // Redistribution and use in source and binary     29 // Redistribution and use in source and binary forms, with or without
 30 // modification, are permitted provided that t     30 // modification, are permitted provided that the following conditions are met:
 31 //                                                 31 //
 32 // 1. Redistributions of source code must reta     32 // 1. Redistributions of source code must retain the above copyright notice,
 33 //   this list of conditions and the following     33 //   this list of conditions and the following disclaimer.
 34 // 2. Redistributions in binary form must repr     34 // 2. Redistributions in binary form must reproduce the above copyright notice,
 35 //   this list of conditions and the following     35 //   this list of conditions and the following disclaimer in the documentation
 36 //   and/or other materials provided with the      36 //   and/or other materials provided with the distribution.
 37 // 3. The name of the author may not be used t     37 // 3. The name of the author may not be used to endorse or promote products
 38 //   derived from this software without specif     38 //   derived from this software without specific prior written permission.
 39 //                                                 39 //
 40 // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``A     40 // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 41 // WARRANTIES, INCLUDING, BUT NOT LIMITED TO,      41 // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 42 // MERCHANTABILITY AND FITNESS FOR A PARTICULA     42 // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 43 // EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DI     43 // EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 44 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGE     44 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 45 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES     45 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 46 // OR BUSINESS INTERRUPTION) HOWEVER CAUSED AN     46 // OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 47 // WHETHER IN CONTRACT, STRICT LIABILITY, OR T     47 // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 48 // OTHERWISE) ARISING IN ANY WAY OUT OF THE US     48 // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 49 // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.      49 // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 50 //                                                 50 //
 51 // Copyright (c) 2006 The Regents of the Unive     51 // Copyright (c) 2006 The Regents of the University of California.
 52 // All rights reserved.                            52 // All rights reserved.
 53 // UCRL-CODE-224807                                53 // UCRL-CODE-224807
 54 //                                                 54 //
 55 //                                                 55 //
 56 //                                                 56 //
 57 // neutron_hp -- source file                       57 // neutron_hp -- source file
 58 // J.M. Verbeke, Jan-2007                          58 // J.M. Verbeke, Jan-2007
 59 // A low energy neutron-induced fission model.     59 // A low energy neutron-induced fission model.
 60 //                                                 60 //
 61                                                    61 
 62 #include "G4FissionLibrary.hh"                     62 #include "G4FissionLibrary.hh"
 63 #include "G4ParticleHPManager.hh"                  63 #include "G4ParticleHPManager.hh"
 64 #include "G4SystemOfUnits.hh"                      64 #include "G4SystemOfUnits.hh"
 65 #include "G4PhysicsModelCatalog.hh"                65 #include "G4PhysicsModelCatalog.hh"
 66                                                    66 
 67 G4FissionLibrary::G4FissionLibrary()               67 G4FissionLibrary::G4FissionLibrary()
 68   : G4ParticleHPFinalState(), theIsotope(0), t     68   : G4ParticleHPFinalState(), theIsotope(0), targetMass(0.0), secID(-1)
 69 {                                                  69 {
 70   hasXsec = false;                                 70   hasXsec = false;
 71   fe=0;                                            71   fe=0;
 72   secID = G4PhysicsModelCatalog::GetModelID( "     72   secID = G4PhysicsModelCatalog::GetModelID( "model_G4LLNLFission" );
 73 }                                                  73 }
 74                                                    74 
 75 G4FissionLibrary::~G4FissionLibrary()              75 G4FissionLibrary::~G4FissionLibrary()
 76 {}                                                 76 {}
 77                                                    77 
 78 G4ParticleHPFinalState * G4FissionLibrary::New     78 G4ParticleHPFinalState * G4FissionLibrary::New()
 79 {                                                  79 {
 80   G4FissionLibrary * theNew = new G4FissionLib     80   G4FissionLibrary * theNew = new G4FissionLibrary;
 81   return theNew;                                   81   return theNew;
 82 }                                                  82 }
 83                                                    83 
 84 //void G4FissionLibrary::Init (G4double A, G4d     84 //void G4FissionLibrary::Init (G4double A, G4double Z, G4String & dirName, G4String &)
 85 void G4FissionLibrary::Init (G4double A, G4dou <<  85 void G4FissionLibrary::Init (G4double A, G4double Z, G4int M, G4String & dirName, G4String &, G4ParticleDefinition*)
 86 {                                                  86 {
 87   G4String tString = "/FS/";                       87   G4String tString = "/FS/";
 88   G4bool dbool;                                    88   G4bool dbool;
 89   theIsotope = static_cast<G4int>(1000*Z+A);       89   theIsotope = static_cast<G4int>(1000*Z+A);
 90   G4ParticleHPDataUsed aFile = theNames.GetNam     90   G4ParticleHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
 91   G4String filename = aFile.GetName();             91   G4String filename = aFile.GetName();
 92                                                    92 
 93   if(!dbool)                                       93   if(!dbool)
 94   {                                                94   {
 95     hasAnyData = false;                            95     hasAnyData = false;
 96     hasFSData = false;                             96     hasFSData = false;
 97     hasXsec = false;                               97     hasXsec = false;
 98     return;                                        98     return;
 99   }                                                99   }
100   //std::ifstream theData(filename, std::ios::    100   //std::ifstream theData(filename, std::ios::in);
101   std::istringstream theData(std::ios::in);       101   std::istringstream theData(std::ios::in);
102   G4ParticleHPManager::GetInstance()->GetDataS    102   G4ParticleHPManager::GetInstance()->GetDataStream(filename,theData);
103                                                   103 
104   // here it comes                                104   // here it comes
105   G4int infoType, dataType;                       105   G4int infoType, dataType;
106   hasFSData = false;                              106   hasFSData = false;
107   while (theData >> infoType) // Loop checking    107   while (theData >> infoType) // Loop checking, 11.03.2015, T. Koi
108   {                                               108   {
109     hasFSData = true;                             109     hasFSData = true;
110     theData >> dataType;                          110     theData >> dataType;
111     switch(infoType)                              111     switch(infoType)
112     {                                             112     {
113       case 1:                                     113       case 1:
114         if(dataType==4) theNeutronAngularDis.I    114         if(dataType==4) theNeutronAngularDis.Init(theData);
115         if(dataType==5) thePromptNeutronEnDis.    115         if(dataType==5) thePromptNeutronEnDis.Init(theData);
116         if(dataType==12) theFinalStatePhotons.    116         if(dataType==12) theFinalStatePhotons.InitMean(theData);
117         if(dataType==14) theFinalStatePhotons.    117         if(dataType==14) theFinalStatePhotons.InitAngular(theData);
118         if(dataType==15) theFinalStatePhotons.    118         if(dataType==15) theFinalStatePhotons.InitEnergies(theData);
119         break;                                    119         break;
120       case 2:                                     120       case 2:
121         if(dataType==1) theFinalStateNeutrons.    121         if(dataType==1) theFinalStateNeutrons.InitMean(theData);
122         break;                                    122         break;
123       case 3:                                     123       case 3:
124         if(dataType==1) theFinalStateNeutrons.    124         if(dataType==1) theFinalStateNeutrons.InitDelayed(theData);
125         if(dataType==5) theDelayedNeutronEnDis    125         if(dataType==5) theDelayedNeutronEnDis.Init(theData);
126         break;                                    126         break;
127       case 4:                                     127       case 4:
128         if(dataType==1) theFinalStateNeutrons.    128         if(dataType==1) theFinalStateNeutrons.InitPrompt(theData);
129         break;                                    129         break;
130       case 5:                                     130       case 5:
131         if(dataType==1) theEnergyRelease.Init(    131         if(dataType==1) theEnergyRelease.Init(theData);
132         break;                                    132         break;
133       default:                                    133       default:
134         G4cout << "G4FissionLibrary::Init: unk    134         G4cout << "G4FissionLibrary::Init: unknown data type"<<dataType<<G4endl;
135         throw G4HadronicException(__FILE__, __    135         throw G4HadronicException(__FILE__, __LINE__, "G4FissionLibrary::Init: unknown data type");
136         break;                                    136         break;
137     }                                             137     }
138   }                                               138   }
139   targetMass = theFinalStateNeutrons.GetTarget    139   targetMass = theFinalStateNeutrons.GetTargetMass();
140   //theData.close();                              140   //theData.close();
141 }                                                 141 }
142                                                   142 
143 G4HadFinalState* G4FissionLibrary::ApplyYourse    143 G4HadFinalState* G4FissionLibrary::ApplyYourself(const G4HadProjectile & theTrack)
144 {                                                 144 {  
145                                                   145 
146   if ( theResult.Get() == NULL ) theResult.Put    146   if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState );
147   theResult.Get()->Clear();                       147   theResult.Get()->Clear();
148                                                   148 
149   // prepare neutron                              149   // prepare neutron
150   G4double eKinetic = theTrack.GetKineticEnerg    150   G4double eKinetic = theTrack.GetKineticEnergy();
151   const G4HadProjectile* incidentParticle = &t    151   const G4HadProjectile* incidentParticle = &theTrack;
152   G4ReactionProduct theNeutron(incidentParticl    152   G4ReactionProduct theNeutron(incidentParticle->GetDefinition() );
153   theNeutron.SetMomentum(incidentParticle->Get    153   theNeutron.SetMomentum(incidentParticle->Get4Momentum().vect() );
154   theNeutron.SetKineticEnergy(eKinetic);          154   theNeutron.SetKineticEnergy(eKinetic);
155                                                   155 
156   // prepare target                               156   // prepare target
157   G4Nucleus aNucleus;                             157   G4Nucleus aNucleus;
158   G4ReactionProduct theTarget;                    158   G4ReactionProduct theTarget; 
159   G4ThreeVector neuVelo = (1./incidentParticle    159   G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
160   theTarget = aNucleus.GetBiasedThermalNucleus    160   theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
161                                                   161 
162   // set neutron and target in the FS classes     162   // set neutron and target in the FS classes 
163   //theNeutronAngularDis.SetNeutron(theNeutron    163   //theNeutronAngularDis.SetNeutron(theNeutron);
164   theNeutronAngularDis.SetProjectileRP(theNeut    164   theNeutronAngularDis.SetProjectileRP(theNeutron);
165   theNeutronAngularDis.SetTarget(theTarget);      165   theNeutronAngularDis.SetTarget(theTarget);
166                                                   166 
167   // boost to target rest system                  167   // boost to target rest system
168   theNeutron.Lorentz(theNeutron, -1*theTarget)    168   theNeutron.Lorentz(theNeutron, -1*theTarget);
169                                                   169 
170   eKinetic = theNeutron.GetKineticEnergy();       170   eKinetic = theNeutron.GetKineticEnergy();    
171                                                   171 
172   // dice neutron and gamma multiplicities, en    172   // dice neutron and gamma multiplicities, energies and momenta in Lab. @@
173   // no energy conservation on an event-to-eve    173   // no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
174   // also for mean, we rely on the consistency    174   // also for mean, we rely on the consistency of the data. @@
175                                                   175 
176   G4int nPrompt=0, gPrompt=0;                     176   G4int nPrompt=0, gPrompt=0;
177   SampleMult(theTrack, &nPrompt, &gPrompt, eKi    177   SampleMult(theTrack, &nPrompt, &gPrompt, eKinetic);
178                                                   178 
179   // Build neutrons and add them to dynamic pa    179   // Build neutrons and add them to dynamic particle vector
180   G4double momentum;                              180   G4double momentum;
181   for(G4int i=0; i<nPrompt; i++)                  181   for(G4int i=0; i<nPrompt; i++)
182   {                                               182   {
183     G4DynamicParticle * it = new G4DynamicPart    183     G4DynamicParticle * it = new G4DynamicParticle;
184     it->SetDefinition(G4Neutron::Neutron());      184     it->SetDefinition(G4Neutron::Neutron());
185     it->SetKineticEnergy(fe->getNeutronEnergy(    185     it->SetKineticEnergy(fe->getNeutronEnergy(i)*MeV);
186     momentum = it->GetTotalMomentum();            186     momentum = it->GetTotalMomentum();
187     G4ThreeVector temp(momentum*fe->getNeutron    187     G4ThreeVector temp(momentum*fe->getNeutronDircosu(i), 
188                        momentum*fe->getNeutron    188                        momentum*fe->getNeutronDircosv(i), 
189                        momentum*fe->getNeutron    189                        momentum*fe->getNeutronDircosw(i));
190     it->SetMomentum( temp );                      190     it->SetMomentum( temp );
191 //    it->SetGlobalTime(fe->getNeutronAge(i)*s    191 //    it->SetGlobalTime(fe->getNeutronAge(i)*second);
192     theResult.Get()->AddSecondary(it, secID);     192     theResult.Get()->AddSecondary(it, secID);
193 //    G4cout <<"G4FissionLibrary::ApplyYoursel    193 //    G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt neutron " << i << " = " << it->GetKineticEnergy()<<G4endl;
194   }                                               194   }
195                                                   195 
196   // Build gammas, lorentz transform them, and    196   // Build gammas, lorentz transform them, and add them to dynamic particle vector
197   for(G4int i=0; i<gPrompt; i++)                  197   for(G4int i=0; i<gPrompt; i++)
198   {                                               198   {
199     G4ReactionProduct * thePhoton = new G4Reac    199     G4ReactionProduct * thePhoton = new G4ReactionProduct;
200     thePhoton->SetDefinition(G4Gamma::Gamma())    200     thePhoton->SetDefinition(G4Gamma::Gamma());
201     thePhoton->SetKineticEnergy(fe->getPhotonE    201     thePhoton->SetKineticEnergy(fe->getPhotonEnergy(i)*MeV);
202     momentum = thePhoton->GetTotalMomentum();     202     momentum = thePhoton->GetTotalMomentum();
203     G4ThreeVector temp(momentum*fe->getPhotonD    203     G4ThreeVector temp(momentum*fe->getPhotonDircosu(i), 
204                        momentum*fe->getPhotonD    204                        momentum*fe->getPhotonDircosv(i), 
205                        momentum*fe->getPhotonD    205                        momentum*fe->getPhotonDircosw(i));
206     thePhoton->SetMomentum( temp );               206     thePhoton->SetMomentum( temp );
207     thePhoton->Lorentz(*thePhoton, -1.*theTarg    207     thePhoton->Lorentz(*thePhoton, -1.*theTarget);
208                                                   208     
209     G4DynamicParticle * it = new G4DynamicPart    209     G4DynamicParticle * it = new G4DynamicParticle;
210     it->SetDefinition(thePhoton->GetDefinition    210     it->SetDefinition(thePhoton->GetDefinition());
211     it->SetMomentum(thePhoton->GetMomentum());    211     it->SetMomentum(thePhoton->GetMomentum());
212 //    it->SetGlobalTime(fe->getPhotonAge(i)*se    212 //    it->SetGlobalTime(fe->getPhotonAge(i)*second);
213 //    G4cout <<"G4FissionLibrary::ApplyYoursel    213 //    G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt photon " << i << " = " << it->GetKineticEnergy()<<G4endl;
214     theResult.Get()->AddSecondary(it, secID);     214     theResult.Get()->AddSecondary(it, secID);
215     delete thePhoton;                             215     delete thePhoton;  
216   }                                               216   }
217 //  G4cout <<"G4FissionLibrary::ApplyYourself:    217 //  G4cout <<"G4FissionLibrary::ApplyYourself: Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
218 //  G4cout <<"G4FissionLibrary::ApplyYourself:    218 //  G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt neutron = "<<nPrompt<<G4endl;
219 //  G4cout <<"G4FissionLibrary::ApplyYourself:    219 //  G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt photons = "<<gPrompt<<G4endl;
220                                                   220 
221   // finally deal with local energy deposition    221   // finally deal with local energy depositions.
222   G4double eDepByFragments = theEnergyRelease.    222   G4double eDepByFragments = theEnergyRelease.GetFragmentKinetic();
223   theResult.Get()->SetLocalEnergyDeposit(eDepB    223   theResult.Get()->SetLocalEnergyDeposit(eDepByFragments);
224 //   G4cout << "G4FissionLibrary::local energy    224 //   G4cout << "G4FissionLibrary::local energy deposit" << eDepByFragments<<G4endl;
225   // clean up the primary neutron                 225   // clean up the primary neutron
226   theResult.Get()->SetStatusChange(stopAndKill    226   theResult.Get()->SetStatusChange(stopAndKill);
227   return theResult.Get();                         227   return theResult.Get();
228 }                                                 228 }
229                                                   229 
230 void G4FissionLibrary::SampleMult(const G4HadP    230 void G4FissionLibrary::SampleMult(const G4HadProjectile & theTrack, G4int* nPrompt,
231                                    G4int* gPro    231                                    G4int* gPrompt, G4double eKinetic)
232 {                                                 232 {
233    G4double promptNeutronMulti = 0;               233    G4double promptNeutronMulti = 0;
234    promptNeutronMulti = theFinalStateNeutrons.    234    promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic); // prompt nubar from Geant
235    G4double delayedNeutronMulti = 0;              235    G4double delayedNeutronMulti = 0;
236    delayedNeutronMulti = theFinalStateNeutrons    236    delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic); // delayed nubar from Geant
237                                                   237 
238    G4double time = theTrack.GetGlobalTime()/se    238    G4double time = theTrack.GetGlobalTime()/second;
239    G4double totalNeutronMulti = theFinalStateN    239    G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
240    if(delayedNeutronMulti==0&&promptNeutronMul    240    if(delayedNeutronMulti==0&&promptNeutronMulti==0) {
241      // no data for prompt and delayed neutron    241      // no data for prompt and delayed neutrons in Geant
242      // but there is perhaps data for the tota    242      // but there is perhaps data for the total neutron multiplicity, in which case 
243      // we use it for prompt neutron emission     243      // we use it for prompt neutron emission
244      if (fe != 0) delete fe;                      244      if (fe != 0) delete fe;
245      fe = new G4fissionEvent(theIsotope, time,    245      fe = new G4fissionEvent(theIsotope, time, totalNeutronMulti, eKinetic);
246    } else {                                       246    } else {
247      // prompt nubar != 0 || delayed nubar !=     247      // prompt nubar != 0 || delayed nubar != 0
248      if (fe != 0) delete fe;                      248      if (fe != 0) delete fe;
249      fe = new G4fissionEvent(theIsotope, time,    249      fe = new G4fissionEvent(theIsotope, time, promptNeutronMulti, eKinetic);
250    }                                              250    }
251    *nPrompt = fe->getNeutronNu();                 251    *nPrompt = fe->getNeutronNu();
252    if (*nPrompt == -1) *nPrompt = 0; // the fi    252    if (*nPrompt == -1) *nPrompt = 0; // the fission library libFission.a has no data for neutrons
253    *gPrompt = fe->getPhotonNu();                  253    *gPrompt = fe->getPhotonNu();
254    if (*gPrompt == -1) *gPrompt = 0; // the fi    254    if (*gPrompt == -1) *gPrompt = 0; // the fission library libFission.a has no data for gammas
255 }                                                 255 }
256                                                   256 
257                                                   257