Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // 28 // V.Ivanchenko 26.02.2018 29 // 30 31 #include "G4KalbachCrossSection.hh" 32 #include "G4Exp.hh" 33 #include "G4Pow.hh" 34 35 //from subroutine sigpar of PRECO-2000 by Con 36 // Calculate optical model reaction cross 37 // using the empirical parameterization 38 // of Narasimha Murthy, Chaterjee, and Gup 39 // going over to the geometrical limit at 40 // 41 // Proton cross sections scaled down 42 // (appropriate for becchetti-greenl 43 // p2 reduced and global red'n facto 44 // Neutron cross sections scaled dow 45 // Scaled up for A>210 (added June ' 46 // my published papers) 47 // (appropriate for Mani et al poten 48 // 49 50 // index: 0-neutron, 1-proton, 2-deuteron, 3-t 51 // parameters: p0, p1, p2, lambda0, lambda1, m 52 53 static const G4double paramK[6][11] = { 54 // n from mani, melkanoff and iori 55 {-312., 0., 0., 12.10, -11.27, 234.1, 56 // p from becchetti and greenlees (but modi 57 // correction function and p2 changed from - 58 {15.72, 9.65, -300., 0.00437,-16.58, 244.7, 59 // d from o.m. of perey and perey 60 {0.798, 420.3,-1651., 0.00619, -7.54, 583.5, 61 // t from o.m. of hafele, flynn et al 62 {-21.45,484.7,-1608., 0.0186, -8.9, 686.3, 63 // 3he from o.m. of gibson et al 64 {-2.88,205.6, -1487.,0.00459,-8.93, 611.2, 65 // alpha from huizenga and igo 66 { 10.95,-85.2, 1146., 0.0643,-13.96, 781.2, 67 }; 68 69 G4double G4KalbachCrossSection::ComputePowerPa 70 { 71 return G4Pow::GetInstance()->powZ(resA, para 72 } 73 74 G4double 75 G4KalbachCrossSection::ComputeCrossSection(G4d 76 G4double resA13, G4double a 77 G4int idx, G4int Z, G4int A 78 G4int resA) 79 { 80 G4double sig = 0.0; 81 G4double signor = 1.0; 82 G4double lambda, mu, nu; 83 G4double ec = std::min(4.0, 100./(G4double)r 84 if(0 < Z) { ec = cb; } 85 86 G4double ecsq = ec*ec; 87 G4double elab = K * (A + resA) / G4double(re 88 89 if(idx == 0) { // parameterization for neutr 90 91 if(resA < 40) { signor =0.7 + resA*0 92 else if(resA > 210) { signor = 1. + (resA- 93 lambda = paramK[idx][3]/resA13 + paramK[id 94 mu = (paramK[idx][5] + paramK[idx][6]*resA 95 // JMQ 20.11.2008 very low energy behaviou 96 // (problem for A (apprx.)> 97 // neutron xs going to zero 98 nu = std::abs((paramK[idx][7]*resA + param 99 + paramK[idx][9]); 100 101 } else { // parameterization for charged 102 // proton correction 103 if(idx == 1) { 104 if (resA <= 60) { signor = 0.92; } 105 else if (resA < 100) { signor = 0.8 + re 106 } 107 lambda = paramK[idx][3]*resA + paramK[idx] 108 mu = paramK[idx][5]*amu1; 109 nu = amu1* (paramK[idx][7] + paramK[idx][8 110 } 111 /* 112 G4cout << "## idx=" << idx << " K=" << K < 113 << " ec=" << ec << " lambda=" << la 114 << " nu=" << nu << G4endl; 115 */ 116 // threashold cross section 117 if(elab < ec) { 118 G4double p = paramK[idx][0]; 119 if(0 < Z) { p += paramK[idx][1]/ec + param 120 G4double a = -2*p*ec + lambda - nu/ecsq; 121 G4double b = p*ecsq + mu + 2*nu/ec; 122 G4double det = a*a - 4*p*b; 123 G4double ecut = (det > 0.0) ? (std::sqrt(d 124 125 //G4cout << " elab= " << elab << " ecut= 126 // << " sig1= " << (p*elab*elab + a 127 // If ecut>0, sig=0 at elab=ecut 128 if(0 == idx) { 129 sig = (lambda*ec + mu + nu/ec)*signor*st 130 } else if(elab >= ecut) { 131 sig = (p*elab*elab + a*elab + b)*signor; 132 133 // extra proton correction 134 if(1 == idx) { 135 // c and w are for global correction factor 136 // they are scaled down for light targets wh 137 G4double cc = std::min(3.15, ec*0.5); 138 G4double signor2 = (ec - elab - cc) *3.15/ ( 139 sig /= (1. + G4Exp(signor2)); 140 } 141 } 142 //G4cout << " ecut= " << ecut << " a 143 // << " signor= " << signor << " sig= 144 145 // high energy cross section 146 } else { 147 // etest is the energy above which the rxn 148 // compared with the geometrical limit and 149 150 // neutron parameters 151 G4double etest = 32.; 152 G4double xnulam = 1.0; 153 154 // parameters for charged 155 static const G4double flow = 1.e-18; 156 static const G4double spill= 1.e+18; 157 if(0 < Z) { 158 etest = 0.0; 159 xnulam = nu / lambda; 160 xnulam = std::min(xnulam, spill); 161 if (xnulam >= flow) { 162 if(1 == idx) { etest = std::sqrt(xnulam) + 7 163 else { etest = 1.2 *std::sqrt(xnulam 164 } 165 } 166 // ** For xnulam.gt.0, sig reaches a maxim 167 sig = (lambda*elab + mu + nu/elab)*signor; 168 if (xnulam >= flow && elab >= etest) { 169 G4double geom = std::sqrt(A*K); 170 geom = 1.23*resA13 + paramK[idx][10] + 4 171 geom = 31.416 * geom * geom; 172 sig = std::max(sig, geom); 173 } 174 } 175 sig = std::max(sig, 0.0); 176 //G4cout << " ---- sig= " << sig << G4endl; 177 return sig; 178 } 179