Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMicroManager.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMicroManager.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMicroManager.cc (Version 6.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 //                                                 23 //
                                                   >>  24 // $Id: G4StatMFMicroManager.cc,v 1.3 2003/11/04 11:31:17 lara Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-06-00-patch-01 $
 27 //                                                 26 //
 28 // Hadronic Process: Nuclear De-excitations        27 // Hadronic Process: Nuclear De-excitations
 29 // by V. Lara                                      28 // by V. Lara
 30                                                    29 
                                                   >>  30 
 31 #include "G4StatMFMicroManager.hh"                 31 #include "G4StatMFMicroManager.hh"
 32 #include "G4HadronicException.hh"                  32 #include "G4HadronicException.hh"
 33                                                    33 
                                                   >>  34 
 34 // Copy constructor                                35 // Copy constructor
 35 G4StatMFMicroManager::G4StatMFMicroManager(con     36 G4StatMFMicroManager::G4StatMFMicroManager(const G4StatMFMicroManager & )
 36 {                                                  37 {
 37     throw G4HadronicException(__FILE__, __LINE <<  38     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroManager::copy_constructor meant to not be accessable");
 38 }                                                  39 }
 39                                                    40 
 40 // Operators                                       41 // Operators
 41                                                    42 
 42 G4StatMFMicroManager & G4StatMFMicroManager::      43 G4StatMFMicroManager & G4StatMFMicroManager::
 43 operator=(const G4StatMFMicroManager & )           44 operator=(const G4StatMFMicroManager & )
 44 {                                                  45 {
 45     throw G4HadronicException(__FILE__, __LINE <<  46     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroManager::operator= meant to not be accessable");
 46     return *this;                                  47     return *this;
 47 }                                                  48 }
 48                                                    49 
 49                                                    50 
 50 G4bool G4StatMFMicroManager::operator==(const      51 G4bool G4StatMFMicroManager::operator==(const G4StatMFMicroManager & ) const
 51 {                                                  52 {
 52     return false;                                  53     return false;
 53 }                                                  54 }
 54                                                    55  
 55                                                    56 
 56 G4bool G4StatMFMicroManager::operator!=(const      57 G4bool G4StatMFMicroManager::operator!=(const G4StatMFMicroManager & ) const
 57 {                                                  58 {
 58     return true;                                   59     return true;
 59 }                                                  60 }
 60                                                    61 
                                                   >>  62 
                                                   >>  63 
 61 // constructor                                     64 // constructor
 62 G4StatMFMicroManager::G4StatMFMicroManager(con <<  65 G4StatMFMicroManager::G4StatMFMicroManager(const G4Fragment & theFragment, const G4int multiplicity,
 63              G4int multiplicity,               <<  66              const G4double FreeIntE, const G4double SCompNuc) : 
 64              G4double FreeIntE, G4double SComp <<  67     _Normalization(0.0)
 65   _Normalization(0.0)                          << 
 66 {                                                  68 {
 67   // Perform class initialization              <<  69     // Perform class initialization
 68   Initialize(theFragment,multiplicity,FreeIntE <<  70     Initialize(theFragment,multiplicity,FreeIntE,SCompNuc);
 69 }                                                  71 }
 70                                                    72 
                                                   >>  73 
 71 // destructor                                      74 // destructor
 72 G4StatMFMicroManager::~G4StatMFMicroManager()      75 G4StatMFMicroManager::~G4StatMFMicroManager() 
 73 {                                                  76 {
 74   if (!_Partition.empty())                         77   if (!_Partition.empty()) 
 75     {                                              78     {
 76       std::for_each(_Partition.begin(),_Partit     79       std::for_each(_Partition.begin(),_Partition.end(),
 77           DeleteFragment());                       80           DeleteFragment());
 78     }                                              81     }
 79 }                                                  82 }
 80                                                    83 
 81 void G4StatMFMicroManager::Initialize(const G4 <<  84 
 82               G4double FreeIntE, G4double SCom <<  85 
                                                   >>  86 // Initialization method
                                                   >>  87 
                                                   >>  88 void G4StatMFMicroManager::Initialize(const G4Fragment & theFragment, const G4int m, 
                                                   >>  89               const G4double FreeIntE, const G4double SCompNuc) 
 83 {                                                  90 {
 84   G4int i;                                     <<  91     G4int i;
 85                                                    92 
 86   G4double U = theFragment.GetExcitationEnergy <<  93     G4double U = theFragment.GetExcitationEnergy();
 87                                                    94 
 88   G4int A = theFragment.GetA_asInt();          <<  95     G4double A = theFragment.GetA();
 89   G4int Z = theFragment.GetZ_asInt();          <<  96     G4double Z = theFragment.GetZ();
 90                                                    97   
 91   // Statistical weights                       <<  98     // Statistical weights
 92   _WW = 0.0;                                   <<  99     _WW = 0.0;
 93                                                   100 
 94   // Mean breakup multiplicity                 << 101     // Mean breakup multiplicity
 95   _MeanMultiplicity = 0.0;                     << 102     _MeanMultiplicity = 0.0;
 96                                                   103 
 97   // Mean channel temperature                  << 104     // Mean channel temperature
 98   _MeanTemperature = 0.0;                      << 105     _MeanTemperature = 0.0;
 99                                                   106 
100   // Mean channel entropy                      << 107     // Mean channel entropy
101   _MeanEntropy = 0.0;                          << 108     _MeanEntropy = 0.0; 
102                                                   109   
103   // Keep fragment atomic numbers              << 110     // Keep fragment atomic numbers
104   //  G4int * FragmentAtomicNumbers = new G4in << 111 //  G4int * FragmentAtomicNumbers = new G4int(static_cast<G4int>(A+0.5));
105   //  G4int * FragmentAtomicNumbers = new G4in << 112 //  G4int * FragmentAtomicNumbers = new G4int(m);
106   G4int FragmentAtomicNumbers[4];              << 113     G4int FragmentAtomicNumbers[4];
107                                                   114   
108   // We distribute A nucleons between m fragme << 115     // We distribute A nucleons between m fragments mantaining the order
109   // FragmentAtomicNumbers[m-1]>FragmentAtomic << 116     // FragmentAtomicNumbers[m-1]>FragmentAtomicNumbers[m-2]>...>FragmentAtomicNumbers[0]
110   // Our initial distribution is               << 117     // Our initial distribution is 
111   // FragmentAtomicNumbers[m-1]=A, FragmentAto << 118     // FragmentAtomicNumbers[m-1]=A, FragmentAtomicNumbers[m-2]=0, ..., FragmentAtomicNumbers[0]=0
112   FragmentAtomicNumbers[im-1] = A;             << 119     FragmentAtomicNumbers[m-1] = static_cast<G4int>(A);
113   for (i = 0; i <  (im - 1); i++) FragmentAtom << 120     for (i = 0; i <  (m - 1); i++) FragmentAtomicNumbers[i] = 0;
114                                                << 121 
115   // We try to distribute A nucleons in partit << 122     // We try to distribute A nucleons in partitions of m fragments
116   // MakePartition return true if it is possib << 123     // MakePartition return true if it is possible 
117   // and false if it is not                    << 124     // and false if it is not 
118                                                << 125     while (MakePartition(m,FragmentAtomicNumbers)) {
119   // Loop checking, 05-Aug-2015, Vladimir Ivan << 126   // Allowed partitions are stored and its probability calculated
120   while (MakePartition(im,FragmentAtomicNumber << 
121     // Allowed partitions are stored and its p << 
122                                                   127       
123     G4StatMFMicroPartition * aPartition = new  << 128   G4StatMFMicroPartition * aPartition = new G4StatMFMicroPartition(static_cast<G4int>(A),
124     G4double PartitionProbability = 0.0;       << 129                    static_cast<G4int>(Z));
                                                   >> 130   G4double PartitionProbability = 0.0;
125                                                   131       
126     for (i = im-1; i >= 0; i--) aPartition->Se << 132   for (i = m-1; i >= 0; i--) aPartition->SetPartitionFragment(FragmentAtomicNumbers[i]);
127     PartitionProbability = aPartition->CalcPar << 133   PartitionProbability = aPartition->CalcPartitionProbability(U,FreeIntE,SCompNuc);
128     _Partition.push_back(aPartition);          << 134   _Partition.push_back(aPartition);
129                                                   135       
130     _WW += PartitionProbability;               << 136   _WW += PartitionProbability;
131     _MeanMultiplicity += im*PartitionProbabili << 137   _MeanMultiplicity += m*PartitionProbability;
132     _MeanTemperature += aPartition->GetTempera << 138   _MeanTemperature += aPartition->GetTemperature() * PartitionProbability;
133     if (PartitionProbability > 0.0)            << 139   if (PartitionProbability > 0.0) 
134       _MeanEntropy += PartitionProbability * a << 140       _MeanEntropy += PartitionProbability * aPartition->GetEntropy();
135   }                                            << 141       
136 }                                              << 142     }
137                                                << 143     
138 G4bool G4StatMFMicroManager::MakePartition(G4i << 144   
139 // Distributes A nucleons between k fragments  << 145     // garbage collection
140 // mantaining the order ANumbers[k-1] > ANumbe << 146 //  delete [] FragmentAtomicNumbers;
141 // If it is possible returns true. In other ca << 147   
142 {                                              << 148 }
143   G4int l = 1;                                 << 149 
144   // Loop checking, 05-Aug-2015, Vladimir Ivan << 150 
145   while (l < k) {                              << 151 G4bool G4StatMFMicroManager::MakePartition(const G4int k, G4int * ANumbers)
146     G4int tmp = ANumbers[l-1] + ANumbers[k-1]; << 152     // Distributes A nucleons between k fragments
147     ANumbers[l-1] += 1;                        << 153     // mantaining the order ANumbers[k-1] > ANumbers[k-2] > ... > ANumbers[0]
148     ANumbers[k-1] -= 1;                        << 154     // If it is possible returns true. In other case returns false
149     if (ANumbers[l-1] > ANumbers[l] || ANumber << 155 {
150       ANumbers[l-1] = 1;                       << 156     G4int l = 1;
151       ANumbers[k-1] = tmp - 1;                 << 157     while (l < k) {
152       l++;                                     << 158   G4int tmp = ANumbers[l-1] + ANumbers[k-1];
153     } else return true;                        << 159   ANumbers[l-1] += 1;
154   }                                            << 160   ANumbers[k-1] -= 1;
155   return false;                                << 161   if (ANumbers[l-1] > ANumbers[l] || ANumbers[k-2] > ANumbers[k-1]) {
156 }                                              << 162       ANumbers[l-1] = 1;
157                                                << 163       ANumbers[k-1] = tmp - 1;
158 void G4StatMFMicroManager::Normalize(G4double  << 164       l++;
159 {                                              << 165   } else return true;
160   _Normalization = Norm;                       << 166     }
161   _WW /= Norm;                                 << 167     return false;
162   _MeanMultiplicity /= Norm;                   << 168 }
163   _MeanTemperature /= Norm;                    << 169 
164   _MeanEntropy /= Norm;                        << 170 
165                                                << 171 
166   return;                                      << 172 void G4StatMFMicroManager::Normalize(const G4double Norm)
                                                   >> 173 {
                                                   >> 174     _Normalization = Norm;
                                                   >> 175     _WW /= Norm;
                                                   >> 176     _MeanMultiplicity /= Norm;
                                                   >> 177     _MeanTemperature /= Norm;
                                                   >> 178     _MeanEntropy /= Norm; 
                                                   >> 179   
                                                   >> 180     return;
167 }                                                 181 }
168                                                   182 
169 G4StatMFChannel*                               << 183 G4StatMFChannel * G4StatMFMicroManager::ChooseChannel(const G4double A0, const G4double Z0, 
170 G4StatMFMicroManager::ChooseChannel(G4int A0,  << 184                   const G4double MeanT)
171 {                                                 185 {
172   G4double RandNumber = _Normalization * _WW * << 186     G4double RandNumber = _Normalization * _WW * G4UniformRand();
173   G4double AccumWeight = 0.0;                  << 187     G4double AccumWeight = 0.0;
174                                                   188   
175   for (std::vector<G4StatMFMicroPartition*>::i << 189     for (std::vector<G4StatMFMicroPartition*>::iterator i = _Partition.begin();
176        i != _Partition.end(); ++i)             << 190    i != _Partition.end(); ++i)
177     {                                             191     {
178   AccumWeight += (*i)->GetProbability();          192   AccumWeight += (*i)->GetProbability();
179   if (RandNumber < AccumWeight)                   193   if (RandNumber < AccumWeight)
180     return (*i)->ChooseZ(A0,Z0,MeanT);         << 194       return (*i)->ChooseZ(A0,Z0,MeanT);
181     }                                             195     }
182                                                   196 
183   throw G4HadronicException(__FILE__, __LINE__ << 197     throw G4HadronicException(__FILE__, __LINE__, 
184           "G4StatMFMicroCanonical::ChooseChann << 198   "G4StatMFMicroCanonical::ChooseChannel: Couldn't find a channel.");
185   return 0;                                    << 199     return 0;
186 }                                                 200 }
187                                                   201