Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMicroCanonical.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMicroCanonical.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMicroCanonical.cc (Version 6.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 //                                                 23 //
                                                   >>  24 // $Id: G4StatMFMicroCanonical.cc,v 1.3 2003/11/04 11:31:17 lara Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-06-00-patch-01 $
 27 //                                                 26 //
 28 // Hadronic Process: Nuclear De-excitations        27 // Hadronic Process: Nuclear De-excitations
 29 // by V. Lara                                      28 // by V. Lara
 30                                                    29 
 31 #include <numeric>                             << 
 32                                                    30 
 33 #include "G4StatMFMicroCanonical.hh"               31 #include "G4StatMFMicroCanonical.hh"
 34 #include "G4PhysicalConstants.hh"              << 
 35 #include "G4SystemOfUnits.hh"                  << 
 36 #include "G4HadronicException.hh"                  32 #include "G4HadronicException.hh"
 37 #include "G4Pow.hh"                            <<  33 #include <numeric>
                                                   >>  34 
                                                   >>  35 
                                                   >>  36 // Copy constructor
                                                   >>  37 G4StatMFMicroCanonical::G4StatMFMicroCanonical(const G4StatMFMicroCanonical &
                                                   >>  38                  ) : G4VStatMFEnsemble()
                                                   >>  39 {
                                                   >>  40     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::copy_constructor meant to not be accessable");
                                                   >>  41 }
                                                   >>  42 
                                                   >>  43 // Operators
                                                   >>  44 
                                                   >>  45 G4StatMFMicroCanonical & G4StatMFMicroCanonical::
                                                   >>  46 operator=(const G4StatMFMicroCanonical & )
                                                   >>  47 {
                                                   >>  48     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::operator= meant to not be accessable");
                                                   >>  49     return *this;
                                                   >>  50 }
                                                   >>  51 
                                                   >>  52 
                                                   >>  53 G4bool G4StatMFMicroCanonical::operator==(const G4StatMFMicroCanonical & ) const
                                                   >>  54 {
                                                   >>  55     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::operator== meant to not be accessable");
                                                   >>  56     return false;
                                                   >>  57 }
                                                   >>  58  
                                                   >>  59 
                                                   >>  60 G4bool G4StatMFMicroCanonical::operator!=(const G4StatMFMicroCanonical & ) const
                                                   >>  61 {
                                                   >>  62     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::operator!= meant to not be accessable");
                                                   >>  63     return true;
                                                   >>  64 }
                                                   >>  65 
                                                   >>  66 
 38                                                    67 
 39 // constructor                                     68 // constructor
 40 G4StatMFMicroCanonical::G4StatMFMicroCanonical     69 G4StatMFMicroCanonical::G4StatMFMicroCanonical(G4Fragment const & theFragment) 
 41 {                                                  70 {
 42   // Perform class initialization              <<  71     // Perform class initialization
 43   Initialize(theFragment);                     <<  72     Initialize(theFragment);
                                                   >>  73 
 44 }                                                  74 }
 45                                                    75 
                                                   >>  76 
 46 // destructor                                      77 // destructor
 47 G4StatMFMicroCanonical::~G4StatMFMicroCanonica     78 G4StatMFMicroCanonical::~G4StatMFMicroCanonical() 
 48 {                                                  79 {
 49   // garbage collection                            80   // garbage collection
 50   if (!_ThePartitionManagerVector.empty()) {       81   if (!_ThePartitionManagerVector.empty()) {
 51     std::for_each(_ThePartitionManagerVector.b     82     std::for_each(_ThePartitionManagerVector.begin(),
 52         _ThePartitionManagerVector.end(),          83         _ThePartitionManagerVector.end(),
 53         DeleteFragment());                         84         DeleteFragment());
 54   }                                                85   }
 55 }                                                  86 }
 56                                                    87 
                                                   >>  88 
                                                   >>  89 
                                                   >>  90 // Initialization method
                                                   >>  91 
 57 void G4StatMFMicroCanonical::Initialize(const      92 void G4StatMFMicroCanonical::Initialize(const G4Fragment & theFragment) 
 58 {                                                  93 {
 59                                                    94   
 60   std::vector<G4StatMFMicroManager*>::iterator     95   std::vector<G4StatMFMicroManager*>::iterator it;
 61                                                    96 
 62   // Excitation Energy                             97   // Excitation Energy 
 63   G4double U = theFragment.GetExcitationEnergy     98   G4double U = theFragment.GetExcitationEnergy();
 64                                                <<  99   
 65   G4int A = theFragment.GetA_asInt();          << 100   G4double A = theFragment.GetA();
 66   G4int Z = theFragment.GetZ_asInt();          << 101   G4double Z = theFragment.GetZ();
 67   G4double x = 1.0 - 2.0*Z/G4double(A);        << 102   
 68   G4Pow* g4calc = G4Pow::GetInstance();        << 
 69                                                << 
 70   // Configuration temperature                    103   // Configuration temperature
 71   G4double TConfiguration = std::sqrt(8.0*U/G4 << 104   G4double TConfiguration = sqrt(8.0*U/A);
 72                                                   105   
 73   // Free internal energy at Temperature T = 0    106   // Free internal energy at Temperature T = 0
 74   __FreeInternalE0 = A*(                          107   __FreeInternalE0 = A*( 
 75       // Volume term (for T = 0)                  108       // Volume term (for T = 0)
 76       -G4StatMFParameters::GetE0() +              109       -G4StatMFParameters::GetE0() +  
 77       // Symmetry term                            110       // Symmetry term
 78       G4StatMFParameters::GetGamma0()*x*x      << 111       G4StatMFParameters::GetGamma0()*(1.0-2.0*Z/A)*(1.0-2.0*Z/A) 
 79       ) +                                         112       ) + 
 80     // Surface term (for T = 0)                   113     // Surface term (for T = 0)
 81     G4StatMFParameters::GetBeta0()*g4calc->Z23 << 114     G4StatMFParameters::GetBeta0()*pow(A,2.0/3.0) + 
 82     // Coulomb term                               115     // Coulomb term 
 83     elm_coupling*0.6*Z*Z/(G4StatMFParameters:: << 116     elm_coupling*(3.0/5.0)*Z*Z/(G4StatMFParameters::Getr0()*pow(A,1.0/3.0));
 84                                                   117   
 85   // Statistical weight                           118   // Statistical weight
 86   G4double W = 0.0;                               119   G4double W = 0.0;
 87                                                   120   
                                                   >> 121   
 88   // Mean breakup multiplicity                    122   // Mean breakup multiplicity
 89   __MeanMultiplicity = 0.0;                       123   __MeanMultiplicity = 0.0;
 90                                                   124   
 91   // Mean channel temperature                     125   // Mean channel temperature
 92   __MeanTemperature = 0.0;                        126   __MeanTemperature = 0.0;
 93                                                   127   
 94   // Mean channel entropy                         128   // Mean channel entropy
 95   __MeanEntropy = 0.0;                            129   __MeanEntropy = 0.0;
 96                                                   130   
 97   // Calculate entropy of compound nucleus        131   // Calculate entropy of compound nucleus
 98   G4double SCompoundNucleus = CalcEntropyOfCom    132   G4double SCompoundNucleus = CalcEntropyOfCompoundNucleus(theFragment,TConfiguration);
 99                                                   133   
100   // Statistical weight of compound nucleus       134   // Statistical weight of compound nucleus
101   _WCompoundNucleus = 1.0;                     << 135   _WCompoundNucleus = 1.0; // exp(SCompoundNucleus - SCompoundNucleus);
102                                                   136   
103   W += _WCompoundNucleus;                         137   W += _WCompoundNucleus;
104                                                << 138   
                                                   >> 139   
                                                   >> 140   
105   // Maximal fragment multiplicity allowed in     141   // Maximal fragment multiplicity allowed in direct simulation
106   G4int MaxMult = G4StatMFMicroCanonical::MaxA    142   G4int MaxMult = G4StatMFMicroCanonical::MaxAllowedMultiplicity;
107   if (A > 110) MaxMult -= 1;                      143   if (A > 110) MaxMult -= 1;
108                                                   144   
109   for (G4int im = 2; im <= MaxMult; im++) {    << 145   
                                                   >> 146   
                                                   >> 147   for (G4int m = 2; m <= MaxMult; m++) {
110     G4StatMFMicroManager * aMicroManager =        148     G4StatMFMicroManager * aMicroManager = 
111       new G4StatMFMicroManager(theFragment,im, << 149       new G4StatMFMicroManager(theFragment,m,__FreeInternalE0,SCompoundNucleus);
112     _ThePartitionManagerVector.push_back(aMicr    150     _ThePartitionManagerVector.push_back(aMicroManager);
113   }                                               151   }
114                                                   152   
115   // W is the total probability                   153   // W is the total probability
116   W = std::accumulate(_ThePartitionManagerVect    154   W = std::accumulate(_ThePartitionManagerVector.begin(),
117           _ThePartitionManagerVector.end(),    << 155       _ThePartitionManagerVector.end(),
118           W, [](const G4double& running_total, << 156       W,SumProbabilities());
119                             G4StatMFMicroManag << 
120                          {                     << 
121                return running_total + manager- << 
122              } );                              << 
123                                                   157   
124   // Normalization of statistical weights         158   // Normalization of statistical weights
125   for (it =  _ThePartitionManagerVector.begin(    159   for (it =  _ThePartitionManagerVector.begin(); it !=  _ThePartitionManagerVector.end(); ++it) 
126     {                                             160     {
127       (*it)->Normalize(W);                        161       (*it)->Normalize(W);
128     }                                             162     }
129                                                   163 
130   _WCompoundNucleus /= W;                         164   _WCompoundNucleus /= W;
131                                                   165   
132   __MeanMultiplicity += 1.0 * _WCompoundNucleu    166   __MeanMultiplicity += 1.0 * _WCompoundNucleus;
133   __MeanTemperature += TConfiguration * _WComp    167   __MeanTemperature += TConfiguration * _WCompoundNucleus;
134   __MeanEntropy += SCompoundNucleus * _WCompou    168   __MeanEntropy += SCompoundNucleus * _WCompoundNucleus;
135                                                   169   
                                                   >> 170 
136   for (it =  _ThePartitionManagerVector.begin(    171   for (it =  _ThePartitionManagerVector.begin(); it !=  _ThePartitionManagerVector.end(); ++it) 
137     {                                             172     {
138       __MeanMultiplicity += (*it)->GetMeanMult    173       __MeanMultiplicity += (*it)->GetMeanMultiplicity();
139       __MeanTemperature += (*it)->GetMeanTempe    174       __MeanTemperature += (*it)->GetMeanTemperature();
140       __MeanEntropy += (*it)->GetMeanEntropy()    175       __MeanEntropy += (*it)->GetMeanEntropy();
141     }                                             176     }
142                                                   177   
143   return;                                         178   return;
144 }                                                 179 }
145                                                   180 
                                                   >> 181 
                                                   >> 182 
                                                   >> 183 
                                                   >> 184 
146 G4double G4StatMFMicroCanonical::CalcFreeInter    185 G4double G4StatMFMicroCanonical::CalcFreeInternalEnergy(const G4Fragment & theFragment, 
147               G4double T)                      << 186               const G4double T)
148 {                                                 187 {
149   G4int A = theFragment.GetA_asInt();          << 188   G4double A = theFragment.GetA();
150   G4int Z = theFragment.GetZ_asInt();          << 189   G4double Z = theFragment.GetZ();
151   G4double A13 = G4Pow::GetInstance()->Z13(A); << 190   G4double A13 = pow(A,1.0/3.0);
152                                                   191   
153   G4double InvLevelDensityPar = G4StatMFParame << 192   G4double InvLevelDensityPar = G4StatMFParameters::GetEpsilon0()*(1.0 + 3.0/(A-1.0));
154     *(1.0 + 3.0/G4double(A-1));                << 
155                                                   193   
156   G4double VolumeTerm = (-G4StatMFParameters::    194   G4double VolumeTerm = (-G4StatMFParameters::GetE0()+T*T/InvLevelDensityPar)*A;
157                                                   195   
158   G4double SymmetryTerm = G4StatMFParameters:: << 196   G4double SymmetryTerm = G4StatMFParameters::GetGamma0()*(A - 2.0*Z)*(A - 2.0*Z)/A;
159     *(A - 2*Z)*(A - 2*Z)/G4double(A);          << 
160                                                   197   
161   G4double SurfaceTerm = (G4StatMFParameters:: << 198   G4double SurfaceTerm = (G4StatMFParameters::Beta(T)-T*G4StatMFParameters::DBetaDT(T))*A13*A13;
162         - T*G4StatMFParameters::DBetaDT(T))*A1 << 
163                                                   199   
164   G4double CoulombTerm = elm_coupling*0.6*Z*Z/ << 200   G4double CoulombTerm = elm_coupling*(3.0/5.0)*Z*Z/(G4StatMFParameters::Getr0()*A13);
165                                                   201   
166   return VolumeTerm + SymmetryTerm + SurfaceTe    202   return VolumeTerm + SymmetryTerm + SurfaceTerm + CoulombTerm;
167 }                                                 203 }
168                                                   204 
169 G4double                                       << 205 
170 G4StatMFMicroCanonical::CalcEntropyOfCompoundN << 206 
171                  G4double & TConf)             << 207 G4double G4StatMFMicroCanonical::CalcEntropyOfCompoundNucleus(const G4Fragment & theFragment,G4double & TConf)
172   // Calculates Temperature and Entropy of com    208   // Calculates Temperature and Entropy of compound nucleus
173 {                                                 209 {
174   G4int A = theFragment.GetA_asInt();          << 210   const G4double A = theFragment.GetA();
175   G4double U = theFragment.GetExcitationEnergy << 211   //    const G4double Z = theFragment.GetZ();
176   G4double A13 = G4Pow::GetInstance()->Z13(A); << 212   const G4double U = theFragment.GetExcitationEnergy();
                                                   >> 213   const G4double A13 = pow(A,1.0/3.0);
177                                                   214   
178   G4double Ta = std::max(std::sqrt(U/(0.125*A) << 215   G4double Ta = std::max(sqrt(U/(0.125*A)),0.0012*MeV); 
179   G4double Tb = Ta;                               216   G4double Tb = Ta;
180                                                   217   
181   G4double ECompoundNucleus = CalcFreeInternal    218   G4double ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Ta);
182   G4double Da = (U+__FreeInternalE0-ECompoundN    219   G4double Da = (U+__FreeInternalE0-ECompoundNucleus)/U;
183   G4double Db = 0.0;                              220   G4double Db = 0.0;
184                                                << 221   
185   G4double InvLevelDensity = CalcInvLevelDensi << 222   
                                                   >> 223   G4double InvLevelDensity = CalcInvLevelDensity(static_cast<G4int>(A));
                                                   >> 224   
186                                                   225   
187   // bracketing the solution                      226   // bracketing the solution
188   if (Da == 0.0) {                                227   if (Da == 0.0) {
189     TConf = Ta;                                   228     TConf = Ta;
190     return 2*Ta*A/InvLevelDensity - G4StatMFPa    229     return 2*Ta*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Ta)*A13*A13;
191   } else if (Da < 0.0) {                          230   } else if (Da < 0.0) {
192     do {                                          231     do {
193       Tb -= 0.5*Tb;                               232       Tb -= 0.5*Tb;
194       ECompoundNucleus = CalcFreeInternalEnerg    233       ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tb);
195       Db = (U+__FreeInternalE0-ECompoundNucleu    234       Db = (U+__FreeInternalE0-ECompoundNucleus)/U;
196     } while (Db < 0.0);                           235     } while (Db < 0.0);
197   } else {                                        236   } else {
198     do {                                          237     do {
199       Tb += 0.5*Tb;                               238       Tb += 0.5*Tb;
200       ECompoundNucleus = CalcFreeInternalEnerg    239       ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tb);
201       Db = (U+__FreeInternalE0-ECompoundNucleu    240       Db = (U+__FreeInternalE0-ECompoundNucleus)/U;
202     } while (Db > 0.0);                           241     } while (Db > 0.0);
203   }                                               242   }
204                                                   243   
205   G4double eps = 1.0e-14 * std::abs(Tb-Ta);    << 244   
                                                   >> 245   G4double eps = 1.0e-14 * abs(Tb-Ta);
206                                                   246   
207   for (G4int i = 0; i < 1000; i++) {              247   for (G4int i = 0; i < 1000; i++) {
208     G4double Tc = (Ta+Tb)*0.5;                 << 248     G4double Tc = (Ta+Tb)/2.0;
209     if (std::abs(Ta-Tb) <= eps) {              << 249     if (abs(Ta-Tb) <= eps) {
210       TConf = Tc;                                 250       TConf = Tc;
211       return 2*Tc*A/InvLevelDensity - G4StatMF    251       return 2*Tc*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Tc)*A13*A13;
212     }                                             252     }
213     ECompoundNucleus = CalcFreeInternalEnergy(    253     ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tc);
214     G4double Dc = (U+__FreeInternalE0-ECompoun    254     G4double Dc = (U+__FreeInternalE0-ECompoundNucleus)/U;
215                                                   255     
216     if (Dc == 0.0) {                              256     if (Dc == 0.0) {
217       TConf = Tc;                                 257       TConf = Tc;
218       return 2*Tc*A/InvLevelDensity - G4StatMF    258       return 2*Tc*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Tc)*A13*A13;
219     }                                             259     }
220                                                   260     
221     if (Da*Dc < 0.0) {                            261     if (Da*Dc < 0.0) {
222       Tb = Tc;                                    262       Tb = Tc;
223       Db = Dc;                                    263       Db = Dc;
224     } else {                                      264     } else {
225       Ta = Tc;                                    265       Ta = Tc;
226       Da = Dc;                                    266       Da = Dc;
227     }                                             267     } 
228   }                                               268   }
229                                                   269   
230   G4cout <<                                    << 270   G4cerr << 
231     "G4StatMFMicrocanoncal::CalcEntropyOfCompo    271     "G4StatMFMicrocanoncal::CalcEntropyOfCompoundNucleus: I can't calculate the temperature" 
232    << G4endl;                                     272    << G4endl;
233                                                   273   
234   return 0.0;                                     274   return 0.0;
235 }                                                 275 }
236                                                   276 
                                                   >> 277 
                                                   >> 278 
                                                   >> 279 
237 G4StatMFChannel *  G4StatMFMicroCanonical::Cho    280 G4StatMFChannel *  G4StatMFMicroCanonical::ChooseAandZ(const G4Fragment & theFragment)
238   // Choice of fragment atomic numbers and cha    281   // Choice of fragment atomic numbers and charges 
239 {                                                 282 {
240   // We choose a multiplicity (1,2,3,...) and  << 283     // We choose a multiplicity (1,2,3,...) and then a channel
241   G4double RandNumber = G4UniformRand();       << 284     G4double RandNumber = G4UniformRand();
242                                                   285 
243   if (RandNumber < _WCompoundNucleus) {        << 286     if (RandNumber < _WCompoundNucleus) { 
244                                                   287   
245     G4StatMFChannel * aChannel = new G4StatMFC << 288   G4StatMFChannel * aChannel = new G4StatMFChannel;
246     aChannel->CreateFragment(theFragment.GetA_ << 289   aChannel->CreateFragment(theFragment.GetA(),theFragment.GetZ());
247     return aChannel;                           << 290   return aChannel;
248                                                   291   
249   } else {                                     << 292     } else {
250                                                   293   
251     G4double AccumWeight = _WCompoundNucleus;  << 294   G4double AccumWeight = _WCompoundNucleus;
252     std::vector<G4StatMFMicroManager*>::iterat << 295   std::vector<G4StatMFMicroManager*>::iterator it;
253     for (it = _ThePartitionManagerVector.begin << 296   for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it) {
254       AccumWeight += (*it)->GetProbability();  << 297       AccumWeight += (*it)->GetProbability();
255       if (RandNumber < AccumWeight) {          << 298       if (RandNumber < AccumWeight) {
256   return (*it)->ChooseChannel(theFragment.GetA << 299     return (*it)->ChooseChannel(theFragment.GetA(),theFragment.GetZ(),__MeanTemperature);
257       }                                        << 300       }
                                                   >> 301   }
                                                   >> 302   throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::ChooseAandZ: wrong normalization!");
258     }                                             303     }
259     throw G4HadronicException(__FILE__, __LINE << 
260   }                                            << 
261                                                   304 
262   return 0;                                    << 305     return 0; 
263 }                                                 306 }
264                                                   307 
265 G4double G4StatMFMicroCanonical::CalcInvLevelD << 308 
                                                   >> 309 
                                                   >> 310 
                                                   >> 311 G4double G4StatMFMicroCanonical::CalcInvLevelDensity(const G4int anA)
266 {                                                 312 {
267   G4double res = 0.0;                          << 313     // Calculate Inverse Density Level
268   if (anA > 1) {                               << 314     // Epsilon0*(1 + 3 /(Af - 1))
269     res = G4StatMFParameters::GetEpsilon0()*(1 << 315     if (anA == 1) return 0.0;
270   }                                            << 316     else return
271   return res;                                  << 317        G4StatMFParameters::GetEpsilon0()*(1.0+3.0/(anA - 1.0));
272 }                                                 318 }
273                                                   319