Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // 27 // 28 // Hadronic Process: Nuclear De-excitations 28 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara 29 // by V. Lara 30 30 31 #include <numeric> 31 #include <numeric> 32 32 33 #include "G4StatMFMicroCanonical.hh" 33 #include "G4StatMFMicroCanonical.hh" 34 #include "G4PhysicalConstants.hh" 34 #include "G4PhysicalConstants.hh" 35 #include "G4SystemOfUnits.hh" 35 #include "G4SystemOfUnits.hh" 36 #include "G4HadronicException.hh" 36 #include "G4HadronicException.hh" 37 #include "G4Pow.hh" 37 #include "G4Pow.hh" 38 38 39 // constructor 39 // constructor 40 G4StatMFMicroCanonical::G4StatMFMicroCanonical 40 G4StatMFMicroCanonical::G4StatMFMicroCanonical(G4Fragment const & theFragment) 41 { 41 { 42 // Perform class initialization 42 // Perform class initialization 43 Initialize(theFragment); 43 Initialize(theFragment); 44 } 44 } 45 45 46 // destructor 46 // destructor 47 G4StatMFMicroCanonical::~G4StatMFMicroCanonica 47 G4StatMFMicroCanonical::~G4StatMFMicroCanonical() 48 { 48 { 49 // garbage collection 49 // garbage collection 50 if (!_ThePartitionManagerVector.empty()) { 50 if (!_ThePartitionManagerVector.empty()) { 51 std::for_each(_ThePartitionManagerVector.b 51 std::for_each(_ThePartitionManagerVector.begin(), 52 _ThePartitionManagerVector.end(), 52 _ThePartitionManagerVector.end(), 53 DeleteFragment()); 53 DeleteFragment()); 54 } 54 } 55 } 55 } 56 56 57 void G4StatMFMicroCanonical::Initialize(const 57 void G4StatMFMicroCanonical::Initialize(const G4Fragment & theFragment) 58 { 58 { 59 59 60 std::vector<G4StatMFMicroManager*>::iterator 60 std::vector<G4StatMFMicroManager*>::iterator it; 61 61 62 // Excitation Energy 62 // Excitation Energy 63 G4double U = theFragment.GetExcitationEnergy 63 G4double U = theFragment.GetExcitationEnergy(); 64 64 65 G4int A = theFragment.GetA_asInt(); 65 G4int A = theFragment.GetA_asInt(); 66 G4int Z = theFragment.GetZ_asInt(); 66 G4int Z = theFragment.GetZ_asInt(); 67 G4double x = 1.0 - 2.0*Z/G4double(A); 67 G4double x = 1.0 - 2.0*Z/G4double(A); 68 G4Pow* g4calc = G4Pow::GetInstance(); 68 G4Pow* g4calc = G4Pow::GetInstance(); 69 69 70 // Configuration temperature 70 // Configuration temperature 71 G4double TConfiguration = std::sqrt(8.0*U/G4 71 G4double TConfiguration = std::sqrt(8.0*U/G4double(A)); 72 72 73 // Free internal energy at Temperature T = 0 73 // Free internal energy at Temperature T = 0 74 __FreeInternalE0 = A*( 74 __FreeInternalE0 = A*( 75 // Volume term (for T = 0) 75 // Volume term (for T = 0) 76 -G4StatMFParameters::GetE0() + 76 -G4StatMFParameters::GetE0() + 77 // Symmetry term 77 // Symmetry term 78 G4StatMFParameters::GetGamma0()*x*x 78 G4StatMFParameters::GetGamma0()*x*x 79 ) + 79 ) + 80 // Surface term (for T = 0) 80 // Surface term (for T = 0) 81 G4StatMFParameters::GetBeta0()*g4calc->Z23 81 G4StatMFParameters::GetBeta0()*g4calc->Z23(A) + 82 // Coulomb term 82 // Coulomb term 83 elm_coupling*0.6*Z*Z/(G4StatMFParameters:: 83 elm_coupling*0.6*Z*Z/(G4StatMFParameters::Getr0()*g4calc->Z13(A)); 84 84 85 // Statistical weight 85 // Statistical weight 86 G4double W = 0.0; 86 G4double W = 0.0; 87 87 88 // Mean breakup multiplicity 88 // Mean breakup multiplicity 89 __MeanMultiplicity = 0.0; 89 __MeanMultiplicity = 0.0; 90 90 91 // Mean channel temperature 91 // Mean channel temperature 92 __MeanTemperature = 0.0; 92 __MeanTemperature = 0.0; 93 93 94 // Mean channel entropy 94 // Mean channel entropy 95 __MeanEntropy = 0.0; 95 __MeanEntropy = 0.0; 96 96 97 // Calculate entropy of compound nucleus 97 // Calculate entropy of compound nucleus 98 G4double SCompoundNucleus = CalcEntropyOfCom 98 G4double SCompoundNucleus = CalcEntropyOfCompoundNucleus(theFragment,TConfiguration); 99 99 100 // Statistical weight of compound nucleus 100 // Statistical weight of compound nucleus 101 _WCompoundNucleus = 1.0; 101 _WCompoundNucleus = 1.0; 102 102 103 W += _WCompoundNucleus; 103 W += _WCompoundNucleus; 104 104 105 // Maximal fragment multiplicity allowed in 105 // Maximal fragment multiplicity allowed in direct simulation 106 G4int MaxMult = G4StatMFMicroCanonical::MaxA 106 G4int MaxMult = G4StatMFMicroCanonical::MaxAllowedMultiplicity; 107 if (A > 110) MaxMult -= 1; 107 if (A > 110) MaxMult -= 1; 108 108 109 for (G4int im = 2; im <= MaxMult; im++) { 109 for (G4int im = 2; im <= MaxMult; im++) { 110 G4StatMFMicroManager * aMicroManager = 110 G4StatMFMicroManager * aMicroManager = 111 new G4StatMFMicroManager(theFragment,im, 111 new G4StatMFMicroManager(theFragment,im,__FreeInternalE0,SCompoundNucleus); 112 _ThePartitionManagerVector.push_back(aMicr 112 _ThePartitionManagerVector.push_back(aMicroManager); 113 } 113 } 114 114 115 // W is the total probability 115 // W is the total probability 116 W = std::accumulate(_ThePartitionManagerVect 116 W = std::accumulate(_ThePartitionManagerVector.begin(), 117 _ThePartitionManagerVector.end(), 117 _ThePartitionManagerVector.end(), 118 W, [](const G4double& running_total, 118 W, [](const G4double& running_total, 119 G4StatMFMicroManag 119 G4StatMFMicroManager*& manager) 120 { 120 { 121 return running_total + manager- 121 return running_total + manager->GetProbability(); 122 } ); 122 } ); 123 123 124 // Normalization of statistical weights 124 // Normalization of statistical weights 125 for (it = _ThePartitionManagerVector.begin( 125 for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it) 126 { 126 { 127 (*it)->Normalize(W); 127 (*it)->Normalize(W); 128 } 128 } 129 129 130 _WCompoundNucleus /= W; 130 _WCompoundNucleus /= W; 131 131 132 __MeanMultiplicity += 1.0 * _WCompoundNucleu 132 __MeanMultiplicity += 1.0 * _WCompoundNucleus; 133 __MeanTemperature += TConfiguration * _WComp 133 __MeanTemperature += TConfiguration * _WCompoundNucleus; 134 __MeanEntropy += SCompoundNucleus * _WCompou 134 __MeanEntropy += SCompoundNucleus * _WCompoundNucleus; 135 135 136 for (it = _ThePartitionManagerVector.begin( 136 for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it) 137 { 137 { 138 __MeanMultiplicity += (*it)->GetMeanMult 138 __MeanMultiplicity += (*it)->GetMeanMultiplicity(); 139 __MeanTemperature += (*it)->GetMeanTempe 139 __MeanTemperature += (*it)->GetMeanTemperature(); 140 __MeanEntropy += (*it)->GetMeanEntropy() 140 __MeanEntropy += (*it)->GetMeanEntropy(); 141 } 141 } 142 142 143 return; 143 return; 144 } 144 } 145 145 146 G4double G4StatMFMicroCanonical::CalcFreeInter 146 G4double G4StatMFMicroCanonical::CalcFreeInternalEnergy(const G4Fragment & theFragment, 147 G4double T) 147 G4double T) 148 { 148 { 149 G4int A = theFragment.GetA_asInt(); 149 G4int A = theFragment.GetA_asInt(); 150 G4int Z = theFragment.GetZ_asInt(); 150 G4int Z = theFragment.GetZ_asInt(); 151 G4double A13 = G4Pow::GetInstance()->Z13(A); 151 G4double A13 = G4Pow::GetInstance()->Z13(A); 152 152 153 G4double InvLevelDensityPar = G4StatMFParame 153 G4double InvLevelDensityPar = G4StatMFParameters::GetEpsilon0() 154 *(1.0 + 3.0/G4double(A-1)); 154 *(1.0 + 3.0/G4double(A-1)); 155 155 156 G4double VolumeTerm = (-G4StatMFParameters:: 156 G4double VolumeTerm = (-G4StatMFParameters::GetE0()+T*T/InvLevelDensityPar)*A; 157 157 158 G4double SymmetryTerm = G4StatMFParameters:: 158 G4double SymmetryTerm = G4StatMFParameters::GetGamma0() 159 *(A - 2*Z)*(A - 2*Z)/G4double(A); 159 *(A - 2*Z)*(A - 2*Z)/G4double(A); 160 160 161 G4double SurfaceTerm = (G4StatMFParameters:: 161 G4double SurfaceTerm = (G4StatMFParameters::Beta(T) 162 - T*G4StatMFParameters::DBetaDT(T))*A1 162 - T*G4StatMFParameters::DBetaDT(T))*A13*A13; 163 163 164 G4double CoulombTerm = elm_coupling*0.6*Z*Z/ 164 G4double CoulombTerm = elm_coupling*0.6*Z*Z/(G4StatMFParameters::Getr0()*A13); 165 165 166 return VolumeTerm + SymmetryTerm + SurfaceTe 166 return VolumeTerm + SymmetryTerm + SurfaceTerm + CoulombTerm; 167 } 167 } 168 168 169 G4double 169 G4double 170 G4StatMFMicroCanonical::CalcEntropyOfCompoundN 170 G4StatMFMicroCanonical::CalcEntropyOfCompoundNucleus(const G4Fragment & theFragment, 171 G4double & TConf) 171 G4double & TConf) 172 // Calculates Temperature and Entropy of com 172 // Calculates Temperature and Entropy of compound nucleus 173 { 173 { 174 G4int A = theFragment.GetA_asInt(); 174 G4int A = theFragment.GetA_asInt(); 175 G4double U = theFragment.GetExcitationEnergy 175 G4double U = theFragment.GetExcitationEnergy(); 176 G4double A13 = G4Pow::GetInstance()->Z13(A); 176 G4double A13 = G4Pow::GetInstance()->Z13(A); 177 177 178 G4double Ta = std::max(std::sqrt(U/(0.125*A) 178 G4double Ta = std::max(std::sqrt(U/(0.125*A)),0.0012*MeV); 179 G4double Tb = Ta; 179 G4double Tb = Ta; 180 180 181 G4double ECompoundNucleus = CalcFreeInternal 181 G4double ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Ta); 182 G4double Da = (U+__FreeInternalE0-ECompoundN 182 G4double Da = (U+__FreeInternalE0-ECompoundNucleus)/U; 183 G4double Db = 0.0; 183 G4double Db = 0.0; 184 184 185 G4double InvLevelDensity = CalcInvLevelDensi 185 G4double InvLevelDensity = CalcInvLevelDensity(A); 186 186 187 // bracketing the solution 187 // bracketing the solution 188 if (Da == 0.0) { 188 if (Da == 0.0) { 189 TConf = Ta; 189 TConf = Ta; 190 return 2*Ta*A/InvLevelDensity - G4StatMFPa 190 return 2*Ta*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Ta)*A13*A13; 191 } else if (Da < 0.0) { 191 } else if (Da < 0.0) { 192 do { 192 do { 193 Tb -= 0.5*Tb; 193 Tb -= 0.5*Tb; 194 ECompoundNucleus = CalcFreeInternalEnerg 194 ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tb); 195 Db = (U+__FreeInternalE0-ECompoundNucleu 195 Db = (U+__FreeInternalE0-ECompoundNucleus)/U; 196 } while (Db < 0.0); 196 } while (Db < 0.0); 197 } else { 197 } else { 198 do { 198 do { 199 Tb += 0.5*Tb; 199 Tb += 0.5*Tb; 200 ECompoundNucleus = CalcFreeInternalEnerg 200 ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tb); 201 Db = (U+__FreeInternalE0-ECompoundNucleu 201 Db = (U+__FreeInternalE0-ECompoundNucleus)/U; 202 } while (Db > 0.0); 202 } while (Db > 0.0); 203 } 203 } 204 204 205 G4double eps = 1.0e-14 * std::abs(Tb-Ta); 205 G4double eps = 1.0e-14 * std::abs(Tb-Ta); 206 206 207 for (G4int i = 0; i < 1000; i++) { 207 for (G4int i = 0; i < 1000; i++) { 208 G4double Tc = (Ta+Tb)*0.5; 208 G4double Tc = (Ta+Tb)*0.5; 209 if (std::abs(Ta-Tb) <= eps) { 209 if (std::abs(Ta-Tb) <= eps) { 210 TConf = Tc; 210 TConf = Tc; 211 return 2*Tc*A/InvLevelDensity - G4StatMF 211 return 2*Tc*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Tc)*A13*A13; 212 } 212 } 213 ECompoundNucleus = CalcFreeInternalEnergy( 213 ECompoundNucleus = CalcFreeInternalEnergy(theFragment,Tc); 214 G4double Dc = (U+__FreeInternalE0-ECompoun 214 G4double Dc = (U+__FreeInternalE0-ECompoundNucleus)/U; 215 215 216 if (Dc == 0.0) { 216 if (Dc == 0.0) { 217 TConf = Tc; 217 TConf = Tc; 218 return 2*Tc*A/InvLevelDensity - G4StatMF 218 return 2*Tc*A/InvLevelDensity - G4StatMFParameters::DBetaDT(Tc)*A13*A13; 219 } 219 } 220 220 221 if (Da*Dc < 0.0) { 221 if (Da*Dc < 0.0) { 222 Tb = Tc; 222 Tb = Tc; 223 Db = Dc; 223 Db = Dc; 224 } else { 224 } else { 225 Ta = Tc; 225 Ta = Tc; 226 Da = Dc; 226 Da = Dc; 227 } 227 } 228 } 228 } 229 229 230 G4cout << 230 G4cout << 231 "G4StatMFMicrocanoncal::CalcEntropyOfCompo 231 "G4StatMFMicrocanoncal::CalcEntropyOfCompoundNucleus: I can't calculate the temperature" 232 << G4endl; 232 << G4endl; 233 233 234 return 0.0; 234 return 0.0; 235 } 235 } 236 236 237 G4StatMFChannel * G4StatMFMicroCanonical::Cho 237 G4StatMFChannel * G4StatMFMicroCanonical::ChooseAandZ(const G4Fragment & theFragment) 238 // Choice of fragment atomic numbers and cha 238 // Choice of fragment atomic numbers and charges 239 { 239 { 240 // We choose a multiplicity (1,2,3,...) and 240 // We choose a multiplicity (1,2,3,...) and then a channel 241 G4double RandNumber = G4UniformRand(); 241 G4double RandNumber = G4UniformRand(); 242 242 243 if (RandNumber < _WCompoundNucleus) { 243 if (RandNumber < _WCompoundNucleus) { 244 244 245 G4StatMFChannel * aChannel = new G4StatMFC 245 G4StatMFChannel * aChannel = new G4StatMFChannel; 246 aChannel->CreateFragment(theFragment.GetA_ 246 aChannel->CreateFragment(theFragment.GetA_asInt(),theFragment.GetZ_asInt()); 247 return aChannel; 247 return aChannel; 248 248 249 } else { 249 } else { 250 250 251 G4double AccumWeight = _WCompoundNucleus; 251 G4double AccumWeight = _WCompoundNucleus; 252 std::vector<G4StatMFMicroManager*>::iterat 252 std::vector<G4StatMFMicroManager*>::iterator it; 253 for (it = _ThePartitionManagerVector.begin 253 for (it = _ThePartitionManagerVector.begin(); it != _ThePartitionManagerVector.end(); ++it) { 254 AccumWeight += (*it)->GetProbability(); 254 AccumWeight += (*it)->GetProbability(); 255 if (RandNumber < AccumWeight) { 255 if (RandNumber < AccumWeight) { 256 return (*it)->ChooseChannel(theFragment.GetA 256 return (*it)->ChooseChannel(theFragment.GetA_asInt(),theFragment.GetZ_asInt(),__MeanTemperature); 257 } 257 } 258 } 258 } 259 throw G4HadronicException(__FILE__, __LINE 259 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroCanonical::ChooseAandZ: wrong normalization!"); 260 } 260 } 261 261 262 return 0; 262 return 0; 263 } 263 } 264 264 265 G4double G4StatMFMicroCanonical::CalcInvLevelD 265 G4double G4StatMFMicroCanonical::CalcInvLevelDensity(G4int anA) 266 { 266 { 267 G4double res = 0.0; 267 G4double res = 0.0; 268 if (anA > 1) { 268 if (anA > 1) { 269 res = G4StatMFParameters::GetEpsilon0()*(1 269 res = G4StatMFParameters::GetEpsilon0()*(1.0+3.0/(anA - 1.0)); 270 } 270 } 271 return res; 271 return res; 272 } 272 } 273 273