Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4StatMFMacroTriNucleon.cc,v 1.5 2006/06/29 20:25:25 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-08-03-patch-02 $ 27 // 29 // 28 // Hadronic Process: Nuclear De-excitations 30 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara 31 // by V. Lara 30 32 31 #include "G4StatMFMacroTriNucleon.hh" 33 #include "G4StatMFMacroTriNucleon.hh" 32 #include "G4PhysicalConstants.hh" << 33 #include "G4SystemOfUnits.hh" << 34 #include "G4Log.hh" << 35 #include "G4Exp.hh" << 36 #include "G4Pow.hh" << 37 << 38 G4StatMFMacroTriNucleon::G4StatMFMacroTriNucle << 39 : G4VStatMFMacroCluster(3) << 40 {} << 41 << 42 G4StatMFMacroTriNucleon::~G4StatMFMacroTriNucl << 43 {} << 44 << 45 G4double << 46 G4StatMFMacroTriNucleon::CalcMeanMultiplicity( << 47 const G4double mu, << 48 const G4double nu, << 49 const G4double T) << 50 { << 51 G4double ThermalWaveLenght = 16.15*fermi/std << 52 G4double lambda3 = ThermalWaveLenght*Thermal << 53 static const G4double degeneracy = 4.0; // << 54 << 55 // old value was 9.224*MeV << 56 G4double BindingE = G4NucleiProperties::GetB << 57 // + G4NucleiProperties::GetBindingEnergy << 58 << 59 G4double exponent = (BindingE+ theA*(mu+nu*t << 60 G4StatMFParameters::GetCoulomb()*th << 61 *theA*G4Pow::GetInstance()->Z23(the << 62 if (exponent > 300.0) exponent = 300.0; << 63 34 64 _MeanMultiplicity = (degeneracy*FreeVol*theA << 35 // Operators 65 G4Exp(exponent); << 36 >> 37 G4StatMFMacroTriNucleon & G4StatMFMacroTriNucleon:: >> 38 operator=(const G4StatMFMacroTriNucleon & ) >> 39 { >> 40 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTriNucleon::operator= meant to not be accessable"); >> 41 return *this; >> 42 } >> 43 >> 44 >> 45 G4bool G4StatMFMacroTriNucleon::operator==(const G4StatMFMacroTriNucleon & ) const >> 46 { >> 47 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTriNucleon::operator== meant to not be accessable"); >> 48 return false; >> 49 } >> 50 >> 51 >> 52 G4bool G4StatMFMacroTriNucleon::operator!=(const G4StatMFMacroTriNucleon & ) const >> 53 { >> 54 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTriNucleon::operator!= meant to not be accessable"); >> 55 return true; >> 56 } >> 57 >> 58 >> 59 >> 60 G4double G4StatMFMacroTriNucleon::CalcMeanMultiplicity(const G4double FreeVol, const G4double mu, >> 61 const G4double nu, const G4double T) >> 62 { >> 63 const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T); >> 64 >> 65 const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght; >> 66 >> 67 const G4double degeneracy = 2.0+2.0; // H3 + He3 >> 68 >> 69 const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* >> 70 (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); >> 71 >> 72 const G4double BindingE = G4NucleiPropertiesTable::GetBindingEnergy(1,theA); // old value was 9.224*MeV >> 73 // + G4NucleiProperties::GetBindingEnergy(2,theA); >> 74 >> 75 G4double exponent = (BindingE+ theA*(mu+nu*theZARatio) - >> 76 Coulomb*theZARatio*theZARatio*std::pow(static_cast<G4double>(theA),5./3.))/T; >> 77 if (exponent > 700.0) exponent = 700.0; >> 78 >> 79 _MeanMultiplicity = (degeneracy*FreeVol*static_cast<G4double>(theA)* >> 80 std::sqrt(static_cast<G4double>(theA))/lambda3)* >> 81 std::exp(exponent); 66 82 67 return _MeanMultiplicity; << 83 return _MeanMultiplicity; 68 } 84 } 69 85 >> 86 70 G4double G4StatMFMacroTriNucleon::CalcEnergy(c 87 G4double G4StatMFMacroTriNucleon::CalcEnergy(const G4double T) 71 { 88 { 72 return _Energy = -G4NucleiProperties::GetBi << 89 const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* 73 G4StatMFParameters::GetCoulomb() * theZARa << 90 (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); 74 * theA*G4Pow::GetInstance()->Z23(theA) + 1 << 91 >> 92 return _Energy = -G4NucleiPropertiesTable::GetBindingEnergy(1,theA) + >> 93 Coulomb * theZARatio * theZARatio * std::pow(static_cast<G4double>(theA),5./3.) + >> 94 (3./2.) * T; >> 95 75 } 96 } 76 97 77 G4double << 98 78 G4StatMFMacroTriNucleon::CalcEntropy(const G4d << 99 G4double G4StatMFMacroTriNucleon::CalcEntropy(const G4double T, const G4double FreeVol) 79 { 100 { 80 G4double Entropy = 0.0; << 101 const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T); 81 if (_MeanMultiplicity > 0.0) { << 102 const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght; 82 G4double ThermalWaveLenght = 16.15*fermi/s << 103 83 G4double lambda3 = ThermalWaveLenght*Therm << 104 G4double Entropy = 0.0; 84 Entropy = _MeanMultiplicity*(2.5 + G4Log(( << 105 if (_MeanMultiplicity > 0.0) 85 *FreeVol/(lambda3*_MeanMultipli << 106 Entropy = _MeanMultiplicity*(5./2.+ 86 } << 107 std::log(4.0*static_cast<G4double>(theA)* 87 return Entropy; << 108 std::sqrt(static_cast<G4double>(theA))*FreeVol/(lambda3*_MeanMultiplicity))); >> 109 >> 110 >> 111 return Entropy; 88 } 112 } 89 113