Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroTemperature.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroTemperature.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroTemperature.cc (Version 8.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4StatMFMacroTemperature.cc,v 1.5 2006/06/29 20:25:21 gunter Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-08-01-patch-01 $
 27 //                                                 29 //
 28 // Hadronic Process: Nuclear De-excitations        30 // Hadronic Process: Nuclear De-excitations
 29 // by V. Lara                                      31 // by V. Lara
 30 //                                             <<  32 
 31 // Modified:                                   << 
 32 // 25.07.08 I.Pshenichnov (in collaboration wi << 
 33 //          Mishustin (FIAS, Frankfurt, INR, M << 
 34 //          Moscow, pshenich@fias.uni-frankfur << 
 35 //          original MF model                  << 
 36 // 16.04.10 V.Ivanchenko improved logic of sol << 
 37 //          to protect code from rare unwanted << 
 38 //          and destructor to source           << 
 39 // 28.10.10 V.Ivanchenko defined members in co << 
 40                                                    33 
 41 #include "G4StatMFMacroTemperature.hh"             34 #include "G4StatMFMacroTemperature.hh"
 42 #include "G4PhysicalConstants.hh"              <<  35 
 43 #include "G4SystemOfUnits.hh"                  <<  36 // operators definitions
 44 #include "G4Pow.hh"                            <<  37 G4StatMFMacroTemperature & 
 45                                                <<  38 G4StatMFMacroTemperature::operator=(const G4StatMFMacroTemperature & ) 
 46 G4StatMFMacroTemperature::G4StatMFMacroTempera <<  39 {
 47   const G4double ExEnergy, const G4double Free <<  40     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::operator= meant to not be accessable");
 48   std::vector<G4VStatMFMacroCluster*> * Cluste <<  41     return *this;
 49   theA(anA),                                   <<  42 }
 50   theZ(aZ),                                    <<  43 
 51   _ExEnergy(ExEnergy),                         <<  44 G4bool G4StatMFMacroTemperature::operator==(const G4StatMFMacroTemperature & ) const 
 52   _FreeInternalE0(FreeE0),                     <<  45 {
 53   _Kappa(kappa),                               <<  46     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::operator== meant to not be accessable");
 54   _MeanMultiplicity(0.0),                      <<  47     return false;
 55   _MeanTemperature(0.0),                       <<  48 }
 56   _ChemPotentialMu(0.0),                       <<  49 
 57   _ChemPotentialNu(0.0),                       <<  50 
 58   _MeanEntropy(0.0),                           <<  51 G4bool G4StatMFMacroTemperature::operator!=(const G4StatMFMacroTemperature & ) const 
 59   _theClusters(ClusterVector)                  <<  52 {
 60 {}                                             <<  53     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::operator!= meant to not be accessable");
 61                                                <<  54     return true;
 62 G4StatMFMacroTemperature::~G4StatMFMacroTemper <<  55 }
 63 {}                                             <<  56 
                                                   >>  57 
                                                   >>  58 
 64                                                    59 
 65 G4double G4StatMFMacroTemperature::CalcTempera     60 G4double G4StatMFMacroTemperature::CalcTemperature(void) 
                                                   >>  61     //  Calculate Chemical potential \nu
 66 {                                                  62 {
 67   // Inital guess for the interval of the ense <<  63     // Temperature
 68   G4double Ta = 0.5;                           <<  64     G4double Ta = 0.00012; 
 69   G4double Tb = std::max(std::sqrt(_ExEnergy/( <<  65     G4double Tb = std::max(std::sqrt(_ExEnergy/(theA*0.12)),0.01*MeV);
 70                                                    66     
 71   G4double fTa = this->operator()(Ta);         <<  67     G4double fTa = this->operator()(Ta); 
 72   G4double fTb = this->operator()(Tb);         <<  68     G4double fTb = this->operator()(Tb); 
 73                                                << 
 74   // Bracketing the solution                   << 
 75   // T should be greater than 0.               << 
 76   // The interval is [Ta,Tb]                   << 
 77   // We start with a value for Ta = 0.5 MeV    << 
 78   // it should be enough to have fTa > 0 If it << 
 79   // the case, we decrease Ta. But carefully,  << 
 80   // fTa growes very fast when Ta is near 0 an << 
 81   // an overflow.                              << 
 82                                                << 
 83   G4int iterations = 0;                        << 
 84   // Loop checking, 05-Aug-2015, Vladimir Ivan << 
 85   while (fTa < 0.0 && ++iterations < 10) {     << 
 86     Ta -= 0.5*Ta;                              << 
 87     fTa = this->operator()(Ta);                << 
 88   }                                            << 
 89   // Usually, fTb will be less than 0, but if  << 
 90   iterations = 0;                              << 
 91   // Loop checking, 05-Aug-2015, Vladimir Ivan << 
 92   while (fTa*fTb > 0.0 && iterations++ < 10) { << 
 93     Tb += 2.*std::fabs(Tb-Ta);                 << 
 94     fTb = this->operator()(Tb);                << 
 95   }                                            << 
 96                                                << 
 97   if (fTa*fTb > 0.0) {                         << 
 98     G4cerr <<"G4StatMFMacroTemperature:"<<" Ta << 
 99     G4cerr <<"G4StatMFMacroTemperature:"<<" fT << 
100     throw G4HadronicException(__FILE__, __LINE << 
101   }                                            << 
102                                                << 
103   G4Solver<G4StatMFMacroTemperature> * theSolv << 
104     new G4Solver<G4StatMFMacroTemperature>(100 << 
105   theSolver->SetIntervalLimits(Ta,Tb);         << 
106   if (!theSolver->Crenshaw(*this)){            << 
107     G4cout <<"G4StatMFMacroTemperature, Crensh << 
108      <<Ta<<" Tb="<<Tb<< G4endl;                << 
109     G4cout <<"G4StatMFMacroTemperature, Crensh << 
110      <<fTa<<" fTb="<<fTb<< G4endl;             << 
111   }                                            << 
112   _MeanTemperature = theSolver->GetRoot();     << 
113   G4double FunctionValureAtRoot =  this->opera << 
114   delete  theSolver;                           << 
115                                                << 
116   // Verify if the root is found and it is ind << 
117   // say, between 1 and 50 MeV, otherwise try  << 
118   if (std::fabs(FunctionValureAtRoot) > 5.e-2) << 
119     if (_MeanTemperature < 1. || _MeanTemperat << 
120       G4cout << "Crenshaw method failed; funct << 
121        << " solution? = " << _MeanTemperature  << 
122       G4Solver<G4StatMFMacroTemperature> * the << 
123   new G4Solver<G4StatMFMacroTemperature>(200,1 << 
124       theSolverBrent->SetIntervalLimits(Ta,Tb) << 
125       if (!theSolverBrent->Brent(*this)){      << 
126   G4cout <<"G4StatMFMacroTemperature, Brent me << 
127          <<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;    << 
128   G4cout <<"G4StatMFMacroTemperature, Brent me << 
129          <<" fTa="<<fTa<<" fTb="<<fTb<< G4endl << 
130   throw G4HadronicException(__FILE__, __LINE__ << 
131       }                                        << 
132                                                    69 
133       _MeanTemperature = theSolverBrent->GetRo <<  70     // Bracketing the solution
134       FunctionValureAtRoot =  this->operator() <<  71     // T should be greater than 0.
135       delete theSolverBrent;                   <<  72     // The interval is [Ta,Tb]
                                                   >>  73     // We start with a low value for Ta = 0.0012 K
                                                   >>  74     // it should be enough to have fTa > 0 If it isn't 
                                                   >>  75     // the case, we decrease Ta. But carefully, because 
                                                   >>  76     // fTa growes very fast when Ta is near 0 and we could have
                                                   >>  77     // an overflow.
                                                   >>  78 
                                                   >>  79     G4int iterations = 0;  
                                                   >>  80     while (fTa < 0.0 && iterations++ < 10) {
                                                   >>  81   Ta -= 0.5*Ta;
                                                   >>  82   fTa = this->operator()(Ta);
136     }                                              83     }
137     if (std::abs(FunctionValureAtRoot) > 5.e-2 <<  84     // Usually, fTb will be less than 0, but if it is not the case: 
138       G4cout << "Brent method failed; function <<  85     iterations = 0;  
139        << " solution? = " << _MeanTemperature  <<  86     while (fTa*fTb > 0.0 && iterations++ < 10) {
140       throw G4HadronicException(__FILE__, __LI <<  87   Tb += 1.5*std::abs(Tb-Ta);
                                                   >>  88   fTb = this->operator()(Tb);
141     }                                              89     }
142   }                                            <<  90   
143   //G4cout << "G4StatMFMacroTemperature::CalcT <<  91     if (fTa*fTb > 0.0) {
144   //<< FunctionValureAtRoot                    <<  92   throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't bracket  the solution.");
145   //     << " T(MeV)= " << _MeanTemperature << <<  93     }
146   return _MeanTemperature;                     <<  94 
                                                   >>  95     G4Solver<G4StatMFMacroTemperature> * theSolver = new G4Solver<G4StatMFMacroTemperature>(100,1.e-4);
                                                   >>  96     theSolver->SetIntervalLimits(Ta,Tb);
                                                   >>  97     //    if (!theSolver->Crenshaw(*this)) 
                                                   >>  98     if (!theSolver->Brent(*this)) 
                                                   >>  99   throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root.");
                                                   >> 100     _MeanTemperature = theSolver->GetRoot();
                                                   >> 101     delete theSolver;
                                                   >> 102     return _MeanTemperature;
147 }                                                 103 }
148                                                   104 
                                                   >> 105 
                                                   >> 106 
149 G4double G4StatMFMacroTemperature::FragsExcitE    107 G4double G4StatMFMacroTemperature::FragsExcitEnergy(const G4double T)
150 // Calculates excitation energy per nucleon an << 108     // Calculates excitation energy per nucleon and summed fragment multiplicity and entropy
151 // multiplicity and entropy                    << 
152 {                                                 109 {
153   // Model Parameters                          << 110 
154   G4Pow* g4calc = G4Pow::GetInstance();        << 111     // Model Parameters
155   G4double R0 = G4StatMFParameters::Getr0()*g4 << 112     G4double R0 = G4StatMFParameters::Getr0()*std::pow(theA,1./3.);
156   G4double R = R0*g4calc->A13(1.0+G4StatMFPara << 113     G4double R = R0*std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(), 1./3.);
157   G4double FreeVol = _Kappa*(4.*pi/3.)*R0*R0*R << 114     G4double FreeVol = _Kappa*(4.*pi/3.)*R0*R0*R0; 
                                                   >> 115  
158                                                   116  
159   // Calculate Chemical potentials             << 117     // Calculate Chemical potentials
160   CalcChemicalPotentialNu(T);                  << 118     CalcChemicalPotentialNu(T);
161                                                   119 
162                                                   120 
163   // Average total fragment energy             << 121     // Average total fragment energy
164   G4double AverageEnergy = 0.0;                << 122     G4double AverageEnergy = 0.0;
165   std::vector<G4VStatMFMacroCluster*>::iterato << 123     std::vector<G4VStatMFMacroCluster*>::iterator i;
166   for (i =  _theClusters->begin(); i != _theCl << 124     for (i =  _theClusters->begin(); i != _theClusters->end(); ++i) 
167     {                                          << 125       {
168       AverageEnergy += (*i)->GetMeanMultiplici << 126   AverageEnergy += (*i)->GetMeanMultiplicity() * (*i)->CalcEnergy(T);
169     }                                          << 127       }
170                                                   128     
171   // Add Coulomb energy                        << 129     // Add Coulomb energy     
172   AverageEnergy += 0.6*elm_coupling*theZ*theZ/ << 130     AverageEnergy += (3./5.)*elm_coupling*theZ*theZ/R;    
173                                                   131     
174   // Calculate mean entropy                    << 132     // Calculate mean entropy
175   _MeanEntropy = 0.0;                          << 133     _MeanEntropy = 0.0;
176   for (i = _theClusters->begin(); i != _theClu << 134     for (i = _theClusters->begin(); i != _theClusters->end(); ++i) 
177     {                                          << 135       {
178       _MeanEntropy += (*i)->CalcEntropy(T,Free << 136   _MeanEntropy += (*i)->CalcEntropy(T,FreeVol); 
179     }                                          << 137       }
                                                   >> 138 
                                                   >> 139     // Excitation energy per nucleon
                                                   >> 140     G4double FragsExcitEnergy = AverageEnergy - _FreeInternalE0;
                                                   >> 141 
                                                   >> 142     return FragsExcitEnergy;
180                                                   143 
181   // Excitation energy per nucleon             << 
182   return AverageEnergy - _FreeInternalE0;      << 
183 }                                                 144 }
184                                                   145 
                                                   >> 146 
185 void G4StatMFMacroTemperature::CalcChemicalPot    147 void G4StatMFMacroTemperature::CalcChemicalPotentialNu(const G4double T)
186 // Calculates the chemical potential \nu       << 148     // Calculates the chemical potential \nu 
                                                   >> 149 
187 {                                                 150 {
188   G4StatMFMacroChemicalPotential * theChemPot  << 151     G4StatMFMacroChemicalPotential * theChemPot = new
189     G4StatMFMacroChemicalPotential(theA,theZ,_ << 152   G4StatMFMacroChemicalPotential(theA,theZ,_Kappa,T,_theClusters);
                                                   >> 153 
190                                                   154 
191   _ChemPotentialNu = theChemPot->CalcChemicalP << 155     _ChemPotentialNu = theChemPot->CalcChemicalPotentialNu();
192   _ChemPotentialMu = theChemPot->GetChemicalPo << 156     _ChemPotentialMu = theChemPot->GetChemicalPotentialMu();
193   _MeanMultiplicity = theChemPot->GetMeanMulti << 157     _MeanMultiplicity = theChemPot->GetMeanMultiplicity();  
194   delete theChemPot;                           << 158   
                                                   >> 159     delete theChemPot;
195                                                   160         
196   return;                                      << 161     return;
                                                   >> 162 
197 }                                                 163 }
198                                                   164 
199                                                   165 
200                                                   166