Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4StatMFMacroTemperature.cc 91834 2015-08-07 07:24:22Z gcosmo $ 27 // 28 // 28 // Hadronic Process: Nuclear De-excitations 29 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara 30 // by V. Lara 30 // 31 // 31 // Modified: 32 // Modified: 32 // 25.07.08 I.Pshenichnov (in collaboration wi 33 // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor 33 // Mishustin (FIAS, Frankfurt, INR, M 34 // Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute, 34 // Moscow, pshenich@fias.uni-frankfur 35 // Moscow, pshenich@fias.uni-frankfurt.de) make algorithm closer to 35 // original MF model 36 // original MF model 36 // 16.04.10 V.Ivanchenko improved logic of sol << 37 // 16.04.10 V.Ivanchenko improved logic of solving equation for tempetature 37 // to protect code from rare unwanted 38 // to protect code from rare unwanted exception; moved constructor 38 // and destructor to source 39 // and destructor to source 39 // 28.10.10 V.Ivanchenko defined members in co 40 // 28.10.10 V.Ivanchenko defined members in constructor and cleaned up 40 41 41 #include "G4StatMFMacroTemperature.hh" 42 #include "G4StatMFMacroTemperature.hh" 42 #include "G4PhysicalConstants.hh" 43 #include "G4PhysicalConstants.hh" 43 #include "G4SystemOfUnits.hh" 44 #include "G4SystemOfUnits.hh" 44 #include "G4Pow.hh" 45 #include "G4Pow.hh" 45 46 46 G4StatMFMacroTemperature::G4StatMFMacroTempera 47 G4StatMFMacroTemperature::G4StatMFMacroTemperature(const G4double anA, const G4double aZ, 47 const G4double ExEnergy, const G4double Free 48 const G4double ExEnergy, const G4double FreeE0, const G4double kappa, 48 std::vector<G4VStatMFMacroCluster*> * Cluste 49 std::vector<G4VStatMFMacroCluster*> * ClusterVector) : 49 theA(anA), 50 theA(anA), 50 theZ(aZ), 51 theZ(aZ), 51 _ExEnergy(ExEnergy), 52 _ExEnergy(ExEnergy), 52 _FreeInternalE0(FreeE0), 53 _FreeInternalE0(FreeE0), 53 _Kappa(kappa), 54 _Kappa(kappa), 54 _MeanMultiplicity(0.0), 55 _MeanMultiplicity(0.0), 55 _MeanTemperature(0.0), 56 _MeanTemperature(0.0), 56 _ChemPotentialMu(0.0), 57 _ChemPotentialMu(0.0), 57 _ChemPotentialNu(0.0), 58 _ChemPotentialNu(0.0), 58 _MeanEntropy(0.0), 59 _MeanEntropy(0.0), 59 _theClusters(ClusterVector) 60 _theClusters(ClusterVector) 60 {} 61 {} 61 62 62 G4StatMFMacroTemperature::~G4StatMFMacroTemper 63 G4StatMFMacroTemperature::~G4StatMFMacroTemperature() 63 {} 64 {} 64 65 65 G4double G4StatMFMacroTemperature::CalcTempera 66 G4double G4StatMFMacroTemperature::CalcTemperature(void) 66 { 67 { 67 // Inital guess for the interval of the ense 68 // Inital guess for the interval of the ensemble temperature values 68 G4double Ta = 0.5; 69 G4double Ta = 0.5; 69 G4double Tb = std::max(std::sqrt(_ExEnergy/( 70 G4double Tb = std::max(std::sqrt(_ExEnergy/(theA*0.12)),0.01*MeV); 70 71 71 G4double fTa = this->operator()(Ta); 72 G4double fTa = this->operator()(Ta); 72 G4double fTb = this->operator()(Tb); 73 G4double fTb = this->operator()(Tb); 73 74 74 // Bracketing the solution 75 // Bracketing the solution 75 // T should be greater than 0. 76 // T should be greater than 0. 76 // The interval is [Ta,Tb] 77 // The interval is [Ta,Tb] 77 // We start with a value for Ta = 0.5 MeV 78 // We start with a value for Ta = 0.5 MeV 78 // it should be enough to have fTa > 0 If it 79 // it should be enough to have fTa > 0 If it isn't 79 // the case, we decrease Ta. But carefully, 80 // the case, we decrease Ta. But carefully, because 80 // fTa growes very fast when Ta is near 0 an 81 // fTa growes very fast when Ta is near 0 and we could have 81 // an overflow. 82 // an overflow. 82 83 83 G4int iterations = 0; 84 G4int iterations = 0; 84 // Loop checking, 05-Aug-2015, Vladimir Ivan 85 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 85 while (fTa < 0.0 && ++iterations < 10) { 86 while (fTa < 0.0 && ++iterations < 10) { 86 Ta -= 0.5*Ta; 87 Ta -= 0.5*Ta; 87 fTa = this->operator()(Ta); 88 fTa = this->operator()(Ta); 88 } 89 } 89 // Usually, fTb will be less than 0, but if 90 // Usually, fTb will be less than 0, but if it is not the case: 90 iterations = 0; 91 iterations = 0; 91 // Loop checking, 05-Aug-2015, Vladimir Ivan 92 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 92 while (fTa*fTb > 0.0 && iterations++ < 10) { 93 while (fTa*fTb > 0.0 && iterations++ < 10) { 93 Tb += 2.*std::fabs(Tb-Ta); 94 Tb += 2.*std::fabs(Tb-Ta); 94 fTb = this->operator()(Tb); 95 fTb = this->operator()(Tb); 95 } 96 } 96 97 97 if (fTa*fTb > 0.0) { 98 if (fTa*fTb > 0.0) { 98 G4cerr <<"G4StatMFMacroTemperature:"<<" Ta 99 G4cerr <<"G4StatMFMacroTemperature:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl; 99 G4cerr <<"G4StatMFMacroTemperature:"<<" fT 100 G4cerr <<"G4StatMFMacroTemperature:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl; 100 throw G4HadronicException(__FILE__, __LINE 101 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't bracket the solution."); 101 } 102 } 102 103 103 G4Solver<G4StatMFMacroTemperature> * theSolv 104 G4Solver<G4StatMFMacroTemperature> * theSolver = 104 new G4Solver<G4StatMFMacroTemperature>(100 105 new G4Solver<G4StatMFMacroTemperature>(100,1.e-4); 105 theSolver->SetIntervalLimits(Ta,Tb); 106 theSolver->SetIntervalLimits(Ta,Tb); 106 if (!theSolver->Crenshaw(*this)){ 107 if (!theSolver->Crenshaw(*this)){ 107 G4cout <<"G4StatMFMacroTemperature, Crensh 108 G4cout <<"G4StatMFMacroTemperature, Crenshaw method failed:"<<" Ta=" 108 <<Ta<<" Tb="<<Tb<< G4endl; 109 <<Ta<<" Tb="<<Tb<< G4endl; 109 G4cout <<"G4StatMFMacroTemperature, Crensh 110 G4cout <<"G4StatMFMacroTemperature, Crenshaw method failed:"<<" fTa=" 110 <<fTa<<" fTb="<<fTb<< G4endl; 111 <<fTa<<" fTb="<<fTb<< G4endl; 111 } 112 } 112 _MeanTemperature = theSolver->GetRoot(); 113 _MeanTemperature = theSolver->GetRoot(); 113 G4double FunctionValureAtRoot = this->opera 114 G4double FunctionValureAtRoot = this->operator()(_MeanTemperature); 114 delete theSolver; 115 delete theSolver; 115 116 116 // Verify if the root is found and it is ind 117 // Verify if the root is found and it is indeed within the physical domain, 117 // say, between 1 and 50 MeV, otherwise try 118 // say, between 1 and 50 MeV, otherwise try Brent method: 118 if (std::fabs(FunctionValureAtRoot) > 5.e-2) 119 if (std::fabs(FunctionValureAtRoot) > 5.e-2) { 119 if (_MeanTemperature < 1. || _MeanTemperat 120 if (_MeanTemperature < 1. || _MeanTemperature > 50.) { 120 G4cout << "Crenshaw method failed; funct 121 G4cout << "Crenshaw method failed; function = " << FunctionValureAtRoot 121 << " solution? = " << _MeanTemperature 122 << " solution? = " << _MeanTemperature << " MeV " << G4endl; 122 G4Solver<G4StatMFMacroTemperature> * the 123 G4Solver<G4StatMFMacroTemperature> * theSolverBrent = 123 new G4Solver<G4StatMFMacroTemperature>(200,1 124 new G4Solver<G4StatMFMacroTemperature>(200,1.e-3); 124 theSolverBrent->SetIntervalLimits(Ta,Tb) 125 theSolverBrent->SetIntervalLimits(Ta,Tb); 125 if (!theSolverBrent->Brent(*this)){ 126 if (!theSolverBrent->Brent(*this)){ 126 G4cout <<"G4StatMFMacroTemperature, Brent me 127 G4cout <<"G4StatMFMacroTemperature, Brent method failed:" 127 <<" Ta="<<Ta<<" Tb="<<Tb<< G4endl; 128 <<" Ta="<<Ta<<" Tb="<<Tb<< G4endl; 128 G4cout <<"G4StatMFMacroTemperature, Brent me 129 G4cout <<"G4StatMFMacroTemperature, Brent method failed:" 129 <<" fTa="<<fTa<<" fTb="<<fTb<< G4endl 130 <<" fTa="<<fTa<<" fTb="<<fTb<< G4endl; 130 throw G4HadronicException(__FILE__, __LINE__ 131 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root with any method."); 131 } 132 } 132 133 133 _MeanTemperature = theSolverBrent->GetRo 134 _MeanTemperature = theSolverBrent->GetRoot(); 134 FunctionValureAtRoot = this->operator() 135 FunctionValureAtRoot = this->operator()(_MeanTemperature); 135 delete theSolverBrent; 136 delete theSolverBrent; 136 } 137 } 137 if (std::abs(FunctionValureAtRoot) > 5.e-2 138 if (std::abs(FunctionValureAtRoot) > 5.e-2) { 138 G4cout << "Brent method failed; function 139 G4cout << "Brent method failed; function = " << FunctionValureAtRoot 139 << " solution? = " << _MeanTemperature 140 << " solution? = " << _MeanTemperature << " MeV " << G4endl; 140 throw G4HadronicException(__FILE__, __LI 141 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root with any method."); 141 } 142 } 142 } 143 } 143 //G4cout << "G4StatMFMacroTemperature::CalcT 144 //G4cout << "G4StatMFMacroTemperature::CalcTemperature: function = " 144 //<< FunctionValureAtRoot 145 //<< FunctionValureAtRoot 145 // << " T(MeV)= " << _MeanTemperature << 146 // << " T(MeV)= " << _MeanTemperature << G4endl; 146 return _MeanTemperature; 147 return _MeanTemperature; 147 } 148 } 148 149 149 G4double G4StatMFMacroTemperature::FragsExcitE 150 G4double G4StatMFMacroTemperature::FragsExcitEnergy(const G4double T) 150 // Calculates excitation energy per nucleon an 151 // Calculates excitation energy per nucleon and summed fragment 151 // multiplicity and entropy 152 // multiplicity and entropy 152 { 153 { 153 // Model Parameters 154 // Model Parameters 154 G4Pow* g4calc = G4Pow::GetInstance(); << 155 G4Pow* g4pow = G4Pow::GetInstance(); 155 G4double R0 = G4StatMFParameters::Getr0()*g4 << 156 G4double R0 = G4StatMFParameters::Getr0()*g4pow->Z13(theA); 156 G4double R = R0*g4calc->A13(1.0+G4StatMFPara << 157 G4double R = R0*g4pow->A13(1.0+G4StatMFParameters::GetKappaCoulomb()); 157 G4double FreeVol = _Kappa*(4.*pi/3.)*R0*R0*R 158 G4double FreeVol = _Kappa*(4.*pi/3.)*R0*R0*R0; 158 159 159 // Calculate Chemical potentials 160 // Calculate Chemical potentials 160 CalcChemicalPotentialNu(T); 161 CalcChemicalPotentialNu(T); 161 162 162 163 163 // Average total fragment energy 164 // Average total fragment energy 164 G4double AverageEnergy = 0.0; 165 G4double AverageEnergy = 0.0; 165 std::vector<G4VStatMFMacroCluster*>::iterato 166 std::vector<G4VStatMFMacroCluster*>::iterator i; 166 for (i = _theClusters->begin(); i != _theCl 167 for (i = _theClusters->begin(); i != _theClusters->end(); ++i) 167 { 168 { 168 AverageEnergy += (*i)->GetMeanMultiplici 169 AverageEnergy += (*i)->GetMeanMultiplicity() * (*i)->CalcEnergy(T); 169 } 170 } 170 171 171 // Add Coulomb energy 172 // Add Coulomb energy 172 AverageEnergy += 0.6*elm_coupling*theZ*theZ/ 173 AverageEnergy += 0.6*elm_coupling*theZ*theZ/R; 173 174 174 // Calculate mean entropy 175 // Calculate mean entropy 175 _MeanEntropy = 0.0; 176 _MeanEntropy = 0.0; 176 for (i = _theClusters->begin(); i != _theClu 177 for (i = _theClusters->begin(); i != _theClusters->end(); ++i) 177 { 178 { 178 _MeanEntropy += (*i)->CalcEntropy(T,Free 179 _MeanEntropy += (*i)->CalcEntropy(T,FreeVol); 179 } 180 } 180 181 181 // Excitation energy per nucleon 182 // Excitation energy per nucleon 182 return AverageEnergy - _FreeInternalE0; 183 return AverageEnergy - _FreeInternalE0; 183 } 184 } 184 185 185 void G4StatMFMacroTemperature::CalcChemicalPot 186 void G4StatMFMacroTemperature::CalcChemicalPotentialNu(const G4double T) 186 // Calculates the chemical potential \nu 187 // Calculates the chemical potential \nu 187 { 188 { 188 G4StatMFMacroChemicalPotential * theChemPot 189 G4StatMFMacroChemicalPotential * theChemPot = new 189 G4StatMFMacroChemicalPotential(theA,theZ,_ 190 G4StatMFMacroChemicalPotential(theA,theZ,_Kappa,T,_theClusters); 190 191 191 _ChemPotentialNu = theChemPot->CalcChemicalP 192 _ChemPotentialNu = theChemPot->CalcChemicalPotentialNu(); 192 _ChemPotentialMu = theChemPot->GetChemicalPo 193 _ChemPotentialMu = theChemPot->GetChemicalPotentialMu(); 193 _MeanMultiplicity = theChemPot->GetMeanMulti 194 _MeanMultiplicity = theChemPot->GetMeanMultiplicity(); 194 delete theChemPot; 195 delete theChemPot; 195 196 196 return; 197 return; 197 } 198 } 198 199 199 200 200 201