Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroTemperature.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroTemperature.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroTemperature.cc (Version 10.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4StatMFMacroTemperature.cc 67983 2013-03-13 10:42:03Z gcosmo $
 27 //                                                 28 //
 28 // Hadronic Process: Nuclear De-excitations        29 // Hadronic Process: Nuclear De-excitations
 29 // by V. Lara                                      30 // by V. Lara
 30 //                                                 31 //
 31 // Modified:                                       32 // Modified:
 32 // 25.07.08 I.Pshenichnov (in collaboration wi     33 // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor 
 33 //          Mishustin (FIAS, Frankfurt, INR, M     34 //          Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute, 
 34 //          Moscow, pshenich@fias.uni-frankfur     35 //          Moscow, pshenich@fias.uni-frankfurt.de) make algorithm closer to
 35 //          original MF model                      36 //          original MF model
 36 // 16.04.10 V.Ivanchenko improved logic of sol <<  37 // 16.04.10 V.Ivanchenko improved logic of solving equation for tempetature
 37 //          to protect code from rare unwanted     38 //          to protect code from rare unwanted exception; moved constructor 
 38 //          and destructor to source               39 //          and destructor to source  
 39 // 28.10.10 V.Ivanchenko defined members in co     40 // 28.10.10 V.Ivanchenko defined members in constructor and cleaned up
 40                                                    41 
 41 #include "G4StatMFMacroTemperature.hh"             42 #include "G4StatMFMacroTemperature.hh"
 42 #include "G4PhysicalConstants.hh"                  43 #include "G4PhysicalConstants.hh"
 43 #include "G4SystemOfUnits.hh"                      44 #include "G4SystemOfUnits.hh"
 44 #include "G4Pow.hh"                            << 
 45                                                    45 
 46 G4StatMFMacroTemperature::G4StatMFMacroTempera     46 G4StatMFMacroTemperature::G4StatMFMacroTemperature(const G4double anA, const G4double aZ, 
 47   const G4double ExEnergy, const G4double Free     47   const G4double ExEnergy, const G4double FreeE0, const G4double kappa, 
 48   std::vector<G4VStatMFMacroCluster*> * Cluste     48   std::vector<G4VStatMFMacroCluster*> * ClusterVector) :
 49   theA(anA),                                       49   theA(anA),
 50   theZ(aZ),                                        50   theZ(aZ),
 51   _ExEnergy(ExEnergy),                             51   _ExEnergy(ExEnergy),
 52   _FreeInternalE0(FreeE0),                         52   _FreeInternalE0(FreeE0),
 53   _Kappa(kappa),                                   53   _Kappa(kappa),
 54   _MeanMultiplicity(0.0),                          54   _MeanMultiplicity(0.0),
 55   _MeanTemperature(0.0),                           55   _MeanTemperature(0.0),
 56   _ChemPotentialMu(0.0),                           56   _ChemPotentialMu(0.0),
 57   _ChemPotentialNu(0.0),                           57   _ChemPotentialNu(0.0),
 58   _MeanEntropy(0.0),                               58   _MeanEntropy(0.0),
 59   _theClusters(ClusterVector)                      59   _theClusters(ClusterVector) 
 60 {}                                                 60 {}
 61                                                    61   
 62 G4StatMFMacroTemperature::~G4StatMFMacroTemper     62 G4StatMFMacroTemperature::~G4StatMFMacroTemperature() 
 63 {}                                                 63 {}
 64                                                    64 
                                                   >>  65 
 65 G4double G4StatMFMacroTemperature::CalcTempera     66 G4double G4StatMFMacroTemperature::CalcTemperature(void) 
 66 {                                                  67 {
 67   // Inital guess for the interval of the ense <<  68     // Inital guess for the interval of the ensemble temperature values
 68   G4double Ta = 0.5;                           <<  69     G4double Ta = 0.5; 
 69   G4double Tb = std::max(std::sqrt(_ExEnergy/( <<  70     G4double Tb = std::max(std::sqrt(_ExEnergy/(theA*0.12)),0.01*MeV);
 70                                                    71     
 71   G4double fTa = this->operator()(Ta);         <<  72     G4double fTa = this->operator()(Ta); 
 72   G4double fTb = this->operator()(Tb);         <<  73     G4double fTb = this->operator()(Tb); 
 73                                                    74 
 74   // Bracketing the solution                   <<  75     // Bracketing the solution
 75   // T should be greater than 0.               <<  76     // T should be greater than 0.
 76   // The interval is [Ta,Tb]                   <<  77     // The interval is [Ta,Tb]
 77   // We start with a value for Ta = 0.5 MeV    <<  78     // We start with a value for Ta = 0.5 MeV
 78   // it should be enough to have fTa > 0 If it <<  79     // it should be enough to have fTa > 0 If it isn't 
 79   // the case, we decrease Ta. But carefully,  <<  80     // the case, we decrease Ta. But carefully, because 
 80   // fTa growes very fast when Ta is near 0 an <<  81     // fTa growes very fast when Ta is near 0 and we could have
 81   // an overflow.                              <<  82     // an overflow.
 82                                                <<  83 
 83   G4int iterations = 0;                        <<  84     G4int iterations = 0;  
 84   // Loop checking, 05-Aug-2015, Vladimir Ivan <<  85     while (fTa < 0.0 && ++iterations < 10) {
 85   while (fTa < 0.0 && ++iterations < 10) {     <<  86   Ta -= 0.5*Ta;
 86     Ta -= 0.5*Ta;                              <<  87   fTa = this->operator()(Ta);
 87     fTa = this->operator()(Ta);                <<  88     }
 88   }                                            <<  89     // Usually, fTb will be less than 0, but if it is not the case: 
 89   // Usually, fTb will be less than 0, but if  <<  90     iterations = 0;  
 90   iterations = 0;                              <<  91     while (fTa*fTb > 0.0 && iterations++ < 10) {
 91   // Loop checking, 05-Aug-2015, Vladimir Ivan <<  92   Tb += 2.*std::fabs(Tb-Ta);
 92   while (fTa*fTb > 0.0 && iterations++ < 10) { <<  93   fTb = this->operator()(Tb);
 93     Tb += 2.*std::fabs(Tb-Ta);                 <<  94     }
 94     fTb = this->operator()(Tb);                << 
 95   }                                            << 
 96                                                    95   
 97   if (fTa*fTb > 0.0) {                         <<  96     if (fTa*fTb > 0.0) {
 98     G4cerr <<"G4StatMFMacroTemperature:"<<" Ta <<  97       G4cerr <<"G4StatMFMacroTemperature:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
 99     G4cerr <<"G4StatMFMacroTemperature:"<<" fT <<  98       G4cerr <<"G4StatMFMacroTemperature:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl;
100     throw G4HadronicException(__FILE__, __LINE <<  99       throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't bracket the solution.");
101   }                                            << 100     }
102                                                << 
103   G4Solver<G4StatMFMacroTemperature> * theSolv << 
104     new G4Solver<G4StatMFMacroTemperature>(100 << 
105   theSolver->SetIntervalLimits(Ta,Tb);         << 
106   if (!theSolver->Crenshaw(*this)){            << 
107     G4cout <<"G4StatMFMacroTemperature, Crensh << 
108      <<Ta<<" Tb="<<Tb<< G4endl;                << 
109     G4cout <<"G4StatMFMacroTemperature, Crensh << 
110      <<fTa<<" fTb="<<fTb<< G4endl;             << 
111   }                                            << 
112   _MeanTemperature = theSolver->GetRoot();     << 
113   G4double FunctionValureAtRoot =  this->opera << 
114   delete  theSolver;                           << 
115                                                << 
116   // Verify if the root is found and it is ind << 
117   // say, between 1 and 50 MeV, otherwise try  << 
118   if (std::fabs(FunctionValureAtRoot) > 5.e-2) << 
119     if (_MeanTemperature < 1. || _MeanTemperat << 
120       G4cout << "Crenshaw method failed; funct << 
121        << " solution? = " << _MeanTemperature  << 
122       G4Solver<G4StatMFMacroTemperature> * the << 
123   new G4Solver<G4StatMFMacroTemperature>(200,1 << 
124       theSolverBrent->SetIntervalLimits(Ta,Tb) << 
125       if (!theSolverBrent->Brent(*this)){      << 
126   G4cout <<"G4StatMFMacroTemperature, Brent me << 
127          <<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;    << 
128   G4cout <<"G4StatMFMacroTemperature, Brent me << 
129          <<" fTa="<<fTa<<" fTb="<<fTb<< G4endl << 
130   throw G4HadronicException(__FILE__, __LINE__ << 
131       }                                        << 
132                                                   101 
133       _MeanTemperature = theSolverBrent->GetRo << 102     G4Solver<G4StatMFMacroTemperature> * theSolver = new G4Solver<G4StatMFMacroTemperature>(100,1.e-4);
134       FunctionValureAtRoot =  this->operator() << 103     theSolver->SetIntervalLimits(Ta,Tb);
135       delete theSolverBrent;                   << 104     if (!theSolver->Crenshaw(*this)){ 
                                                   >> 105       G4cout <<"G4StatMFMacroTemperature, Crenshaw method failed:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
                                                   >> 106       G4cout <<"G4StatMFMacroTemperature, Crenshaw method failed:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl;
136     }                                             107     }
137     if (std::abs(FunctionValureAtRoot) > 5.e-2 << 108     _MeanTemperature = theSolver->GetRoot();
138       G4cout << "Brent method failed; function << 109     G4double FunctionValureAtRoot =  this->operator()(_MeanTemperature);
139        << " solution? = " << _MeanTemperature  << 110     delete  theSolver;
140       throw G4HadronicException(__FILE__, __LI << 111 
                                                   >> 112     // Verify if the root is found and it is indeed within the physical domain, 
                                                   >> 113     // say, between 1 and 50 MeV, otherwise try Brent method:
                                                   >> 114     if (std::fabs(FunctionValureAtRoot) > 5.e-2) {
                                                   >> 115       if (_MeanTemperature < 1. || _MeanTemperature > 50.) {
                                                   >> 116   G4cout << "Crenshaw method failed; function = " << FunctionValureAtRoot 
                                                   >> 117          << " solution? = " << _MeanTemperature << " MeV " << G4endl;
                                                   >> 118   G4Solver<G4StatMFMacroTemperature> * theSolverBrent = new G4Solver<G4StatMFMacroTemperature>(200,1.e-3);
                                                   >> 119   theSolverBrent->SetIntervalLimits(Ta,Tb);
                                                   >> 120   if (!theSolverBrent->Brent(*this)){
                                                   >> 121     G4cout <<"G4StatMFMacroTemperature, Brent method failed:"<<" Ta="<<Ta<<" Tb="<<Tb<< G4endl;
                                                   >> 122     G4cout <<"G4StatMFMacroTemperature, Brent method failed:"<<" fTa="<<fTa<<" fTb="<<fTb<< G4endl; 
                                                   >> 123     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root with any method.");
                                                   >> 124   }
                                                   >> 125 
                                                   >> 126   _MeanTemperature = theSolverBrent->GetRoot();
                                                   >> 127   FunctionValureAtRoot =  this->operator()(_MeanTemperature);
                                                   >> 128   delete theSolverBrent;
                                                   >> 129       }
                                                   >> 130       if (std::abs(FunctionValureAtRoot) > 5.e-2) {
                                                   >> 131   //if (_MeanTemperature < 1. || _MeanTemperature > 50. || std::abs(FunctionValureAtRoot) > 5.e-2) {
                                                   >> 132   G4cout << "Brent method failed; function = " << FunctionValureAtRoot << " solution? = " << _MeanTemperature << " MeV " << G4endl;
                                                   >> 133   throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroTemperature::CalcTemperature: I couldn't find the root with any method.");
                                                   >> 134       }
141     }                                             135     }
142   }                                            << 136     //G4cout << "G4StatMFMacroTemperature::CalcTemperature: function = " << FunctionValureAtRoot 
143   //G4cout << "G4StatMFMacroTemperature::CalcT << 137     //     << " T(MeV)= " << _MeanTemperature << G4endl;
144   //<< FunctionValureAtRoot                    << 138     return _MeanTemperature;
145   //     << " T(MeV)= " << _MeanTemperature << << 
146   return _MeanTemperature;                     << 
147 }                                                 139 }
148                                                   140 
                                                   >> 141 
                                                   >> 142 
149 G4double G4StatMFMacroTemperature::FragsExcitE    143 G4double G4StatMFMacroTemperature::FragsExcitEnergy(const G4double T)
150 // Calculates excitation energy per nucleon an << 144     // Calculates excitation energy per nucleon and summed fragment multiplicity and entropy
151 // multiplicity and entropy                    << 
152 {                                                 145 {
153   // Model Parameters                          << 146 
154   G4Pow* g4calc = G4Pow::GetInstance();        << 147     // Model Parameters
155   G4double R0 = G4StatMFParameters::Getr0()*g4 << 148     G4double R0 = G4StatMFParameters::Getr0()*std::pow(theA,1./3.);
156   G4double R = R0*g4calc->A13(1.0+G4StatMFPara << 149     G4double R = R0*std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(), 1./3.);
157   G4double FreeVol = _Kappa*(4.*pi/3.)*R0*R0*R << 150     G4double FreeVol = _Kappa*(4.*pi/3.)*R0*R0*R0; 
158                                                   151  
159   // Calculate Chemical potentials             << 152  
160   CalcChemicalPotentialNu(T);                  << 153     // Calculate Chemical potentials
                                                   >> 154     CalcChemicalPotentialNu(T);
161                                                   155 
162                                                   156 
163   // Average total fragment energy             << 157     // Average total fragment energy
164   G4double AverageEnergy = 0.0;                << 158     G4double AverageEnergy = 0.0;
165   std::vector<G4VStatMFMacroCluster*>::iterato << 159     std::vector<G4VStatMFMacroCluster*>::iterator i;
166   for (i =  _theClusters->begin(); i != _theCl << 160     for (i =  _theClusters->begin(); i != _theClusters->end(); ++i) 
167     {                                          << 161       {
168       AverageEnergy += (*i)->GetMeanMultiplici << 162   AverageEnergy += (*i)->GetMeanMultiplicity() * (*i)->CalcEnergy(T);
169     }                                          << 163       }
170                                                   164     
171   // Add Coulomb energy                        << 165     // Add Coulomb energy     
172   AverageEnergy += 0.6*elm_coupling*theZ*theZ/ << 166     AverageEnergy += (3./5.)*elm_coupling*theZ*theZ/R;    
173                                                   167     
174   // Calculate mean entropy                    << 168     // Calculate mean entropy
175   _MeanEntropy = 0.0;                          << 169     _MeanEntropy = 0.0;
176   for (i = _theClusters->begin(); i != _theClu << 170     for (i = _theClusters->begin(); i != _theClusters->end(); ++i) 
177     {                                          << 171       {
178       _MeanEntropy += (*i)->CalcEntropy(T,Free << 172   _MeanEntropy += (*i)->CalcEntropy(T,FreeVol); 
179     }                                          << 173       }
                                                   >> 174 
                                                   >> 175     // Excitation energy per nucleon
                                                   >> 176     return AverageEnergy - _FreeInternalE0;
180                                                   177 
181   // Excitation energy per nucleon             << 
182   return AverageEnergy - _FreeInternalE0;      << 
183 }                                                 178 }
184                                                   179 
                                                   >> 180 
185 void G4StatMFMacroTemperature::CalcChemicalPot    181 void G4StatMFMacroTemperature::CalcChemicalPotentialNu(const G4double T)
186 // Calculates the chemical potential \nu       << 182     // Calculates the chemical potential \nu 
                                                   >> 183 
187 {                                                 184 {
188   G4StatMFMacroChemicalPotential * theChemPot  << 185     G4StatMFMacroChemicalPotential * theChemPot = new
189     G4StatMFMacroChemicalPotential(theA,theZ,_ << 186   G4StatMFMacroChemicalPotential(theA,theZ,_Kappa,T,_theClusters);
                                                   >> 187 
190                                                   188 
191   _ChemPotentialNu = theChemPot->CalcChemicalP << 189     _ChemPotentialNu = theChemPot->CalcChemicalPotentialNu();
192   _ChemPotentialMu = theChemPot->GetChemicalPo << 190     _ChemPotentialMu = theChemPot->GetChemicalPotentialMu();
193   _MeanMultiplicity = theChemPot->GetMeanMulti << 191     _MeanMultiplicity = theChemPot->GetMeanMultiplicity();  
194   delete theChemPot;                           << 192   
                                                   >> 193     delete theChemPot;
195                                                   194         
196   return;                                      << 195     return;
                                                   >> 196 
197 }                                                 197 }
198                                                   198 
199                                                   199 
200                                                   200