Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroMultiNucleon.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroMultiNucleon.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroMultiNucleon.cc (Version 7.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 //                                                 23 //
                                                   >>  24 // $Id: G4StatMFMacroMultiNucleon.cc,v 1.3 2004/12/07 13:47:45 gunter Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-07-00-cand-03 $
 27 //                                                 26 //
 28 // Hadronic Process: Nuclear De-excitations        27 // Hadronic Process: Nuclear De-excitations
 29 // by V. Lara                                      28 // by V. Lara
 30 //                                             << 
 31 // Modified:                                   << 
 32 // 25.07.08 I.Pshenichnov (in collaboration wi << 
 33 //          Mishustin (FIAS, Frankfurt, INR, M << 
 34 //          Moscow, pshenich@fias.uni-frankfur << 
 35 //          symmetry energy                    << 
 36                                                    29 
 37 #include "G4StatMFMacroMultiNucleon.hh"            30 #include "G4StatMFMacroMultiNucleon.hh"
 38 #include "G4PhysicalConstants.hh"              << 
 39 #include "G4SystemOfUnits.hh"                  << 
 40 #include "G4Log.hh"                            << 
 41 #include "G4Exp.hh"                            << 
 42 #include "G4Pow.hh"                            << 
 43                                                    31 
 44 // Default constructor                             32 // Default constructor
 45 G4StatMFMacroMultiNucleon::                        33 G4StatMFMacroMultiNucleon::
 46 G4StatMFMacroMultiNucleon() :                      34 G4StatMFMacroMultiNucleon() :
 47     G4VStatMFMacroCluster(0)  // Beacuse the d     35     G4VStatMFMacroCluster(0)  // Beacuse the def. constr. of base class is private
 48 {                                                  36 {
 49     throw G4HadronicException(__FILE__, __LINE <<  37     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::default_constructor meant to not be accessable");
 50 }                                                  38 }
 51                                                    39 
 52 // Copy constructor                                40 // Copy constructor
 53 G4StatMFMacroMultiNucleon::                        41 G4StatMFMacroMultiNucleon::
 54 G4StatMFMacroMultiNucleon(const G4StatMFMacroM     42 G4StatMFMacroMultiNucleon(const G4StatMFMacroMultiNucleon & ) :
 55     G4VStatMFMacroCluster(0)  // Beacuse the d     43     G4VStatMFMacroCluster(0)  // Beacuse the def. constr. of base class is private
 56 {                                                  44 {
 57     throw G4HadronicException(__FILE__, __LINE <<  45     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::copy_constructor meant to not be accessable");
 58 }                                                  46 }
 59                                                    47 
 60 // Operators                                       48 // Operators
 61                                                    49 
 62 G4StatMFMacroMultiNucleon & G4StatMFMacroMulti     50 G4StatMFMacroMultiNucleon & G4StatMFMacroMultiNucleon::
 63 operator=(const G4StatMFMacroMultiNucleon & )      51 operator=(const G4StatMFMacroMultiNucleon & ) 
 64 {                                                  52 {
 65     throw G4HadronicException(__FILE__, __LINE <<  53     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::operator= meant to not be accessable");
 66     return *this;                                  54     return *this;
 67 }                                                  55 }
 68                                                    56 
                                                   >>  57 
 69 G4bool G4StatMFMacroMultiNucleon::operator==(c     58 G4bool G4StatMFMacroMultiNucleon::operator==(const G4StatMFMacroMultiNucleon & ) const
 70 {                                                  59 {
 71     throw G4HadronicException(__FILE__, __LINE <<  60     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::operator== meant to not be accessable");
 72     return false;                                  61     return false;
 73 }                                                  62 }
 74                                                    63  
                                                   >>  64 
 75 G4bool G4StatMFMacroMultiNucleon::operator!=(c     65 G4bool G4StatMFMacroMultiNucleon::operator!=(const G4StatMFMacroMultiNucleon & ) const
 76 {                                                  66 {
 77     throw G4HadronicException(__FILE__, __LINE <<  67     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroMultiNucleon::operator!= meant to not be accessable");
 78     return true;                                   68     return true;
 79 }                                                  69 }
 80                                                    70 
 81 G4double G4StatMFMacroMultiNucleon::CalcMeanMu <<  71 
 82                const G4double mu,              <<  72 
 83                const G4double nu,              <<  73 G4double G4StatMFMacroMultiNucleon::CalcMeanMultiplicity(const G4double FreeVol, const G4double mu,
 84                const G4double T)               <<  74                const G4double nu, const G4double T)
 85 {                                              <<  75 {
 86   G4double ThermalWaveLenght = 16.15*fermi/std <<  76     const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T);
 87   G4double lambda3 = ThermalWaveLenght*Thermal <<  77   
 88   G4Pow* g4calc = G4Pow::GetInstance();        <<  78     const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght;
 89   G4double A23 = g4calc->Z23(theA);            <<  79   
 90                                                <<  80     const G4double A23 = std::pow(static_cast<G4double>(theA),2./3.);
 91   G4double exponent = (mu + nu*theZARatio+ G4S <<  81   
 92            + T*T/_InvLevelDensity              <<  82     const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
 93            - G4StatMFParameters::GetGamma0()*( <<  83   (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
 94            (1.0 - 2.0*theZARatio))*theA        <<  84   
 95     - G4StatMFParameters::Beta(T)*A23          <<  85     G4double exponent = (mu + nu*theZARatio+ G4StatMFParameters::GetE0() + T*T/_InvLevelDensity 
 96     - G4StatMFParameters::GetCoulomb()*theZARa <<  86        - G4StatMFParameters::GetGamma0()*(1.0 - 2.0*theZARatio)*
 97                                                <<  87        (1.0 - 2.0*theZARatio))*theA
 98   exponent /= T;                               <<  88   - G4StatMFParameters::Beta(T)*A23 - Coulomb*theZARatio*theZARatio*A23*theA;
 99                                                <<  89   
100   if (exponent > 30.0) exponent = 30.0;        <<  90     exponent /= T;
101                                                <<  91   
102   _MeanMultiplicity = std::max((FreeVol * theA <<  92     if (exponent > 30.0) exponent = 30.0;
103              G4Exp(exponent),1.0e-30);         <<  93   
104   return _MeanMultiplicity;                    <<  94     _MeanMultiplicity = std::max((FreeVol * static_cast<G4double>(theA) * 
                                                   >>  95             std::sqrt(static_cast<G4double>(theA))/lambda3) *
                                                   >>  96            std::exp(exponent),1.0e-30);
                                                   >>  97     return _MeanMultiplicity; 
105 }                                                  98 }
106                                                    99 
                                                   >> 100 
107 G4double G4StatMFMacroMultiNucleon::CalcZARati    101 G4double G4StatMFMacroMultiNucleon::CalcZARatio(const G4double nu)
108 {                                                 102 {
109   G4double den = 8*G4StatMFParameters::GetGamm << 103     const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
110     + 2*G4StatMFParameters::GetCoulomb()*G4Pow << 104   (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
111   theZARatio = (4.0*G4StatMFParameters::GetGam << 105 
112   return theZARatio;                           << 106     G4double den = 8.0*G4StatMFParameters::GetGamma0()+2.0*Coulomb*std::pow(static_cast<G4double>(theA),2./3.);
                                                   >> 107     G4double num = 4.0*G4StatMFParameters::GetGamma0()+nu;
                                                   >> 108   
                                                   >> 109     return theZARatio = num/den;
                                                   >> 110   
                                                   >> 111 
113 }                                                 112 }
114                                                   113 
                                                   >> 114 
                                                   >> 115 
115 G4double G4StatMFMacroMultiNucleon::CalcEnergy    116 G4double G4StatMFMacroMultiNucleon::CalcEnergy(const G4double T)
116 {                                                 117 {
117   G4Pow* g4calc = G4Pow::GetInstance();        << 118     const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
118   G4double A23 = g4calc->Z23(theA);            << 119   (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
                                                   >> 120   
                                                   >> 121     const G4double A23 = std::pow(static_cast<G4double>(theA),2./3.);
119                                                   122 
120   // Volume term                               << 123     // Volume term 
121   G4double EVol = theA * (T*T/_InvLevelDensity << 124     G4double EVol = static_cast<G4double>(theA) * (T*T/_InvLevelDensity - G4StatMFParameters::GetE0());
122                                                   125   
123   // Symmetry term                             << 126     // Symmetry term
124   G4double ESym = theA * G4StatMFParameters::G << 127 //  G4double ESym = static_cast<G4double>(theA) * G4StatMFParameters::GetGamma0() *(1. - 2.* theZARatio * theZARatio);
125     *(1. - 2.* theZARatio) * (1. - 2.* theZARa << 
126                                                   128   
127   // Surface term                              << 129     // Surface term
128   G4double ESurf = A23*(G4StatMFParameters::Be << 130     G4double ESurf = A23*(G4StatMFParameters::Beta(T) - T*G4StatMFParameters::DBetaDT(T));
129                                                   131  
130   // Coulomb term                              << 132     // Coulomb term
131   G4double ECoul = G4StatMFParameters::GetCoul << 133     G4double ECoul = Coulomb*A23*static_cast<G4double>(theA)*theZARatio*theZARatio;
132                                                   134   
133   // Translational term                        << 135     // Translational term
134   G4double ETrans = 1.5*T;                     << 136     G4double ETrans = (3./2.)*T;
135   return _Energy = EVol + ESurf + ECoul + ETra << 137   
                                                   >> 138   
                                                   >> 139     return _Energy = EVol + ESurf + ECoul + ETrans; // + ESym; 
136 }                                                 140 }
137                                                   141 
138 G4double G4StatMFMacroMultiNucleon::CalcEntrop << 142 
139             const G4double FreeVol)            << 143 G4double G4StatMFMacroMultiNucleon::CalcEntropy(const G4double T, const G4double FreeVol)
140 {                                                 144 {
141   G4double Entropy = 0.0;                      << 145     const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T);
142   if (_MeanMultiplicity > 0.0) {               << 146     const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght;
143                                                   147 
144     G4double ThermalWaveLenght = 16.15*fermi/s << 148     G4double Entropy = 0.0;
145     G4double lambda3 = ThermalWaveLenght*Therm << 149     if (_MeanMultiplicity > 0.0) {
146     // Volume term                             << 150   // Volume term
147     G4double SV = 2.0*theA*T/_InvLevelDensity; << 151   G4double SV = 2.0*static_cast<G4double>(theA)*T/_InvLevelDensity;
148                                                   152     
149     // Surface term                            << 153   // Surface term
150     G4double SS = -G4StatMFParameters::DBetaDT << 154   G4double SS = -G4StatMFParameters::DBetaDT(T)*std::pow(static_cast<G4double>(theA),2./3.);
151                                                   155     
152     // Translational term                      << 156   // Translational term
153     G4double ST = 2.5 + G4Log(FreeVol * std::s << 157   G4double ST = (5./2.)+std::log(FreeVol * std::sqrt(static_cast<G4double>(theA)) * 
154             /(lambda3*_MeanMultiplicity));     << 158           static_cast<G4double>(theA)/(lambda3*_MeanMultiplicity));
155                                                << 159     
156     Entropy = _MeanMultiplicity*(SV + SS + ST) << 160     
157   }                                            << 161   Entropy = _MeanMultiplicity*(SV + SS + ST);
158   return Entropy;                              << 162     }
                                                   >> 163                 
                                                   >> 164                 
                                                   >> 165     return Entropy;
159 }                                                 166 }
160                                                   167