Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id$ 27 // 28 // 28 // Hadronic Process: Nuclear De-excitations 29 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara 30 // by V. Lara 30 31 31 #include "G4StatMFMacroChemicalPotential.hh" 32 #include "G4StatMFMacroChemicalPotential.hh" 32 #include "G4PhysicalConstants.hh" 33 #include "G4PhysicalConstants.hh" 33 #include "G4Pow.hh" << 34 34 35 // operators definitions 35 // operators definitions 36 G4StatMFMacroChemicalPotential & 36 G4StatMFMacroChemicalPotential & 37 G4StatMFMacroChemicalPotential::operator=(cons 37 G4StatMFMacroChemicalPotential::operator=(const G4StatMFMacroChemicalPotential & ) 38 { 38 { 39 throw G4HadronicException(__FILE__, __LINE << 39 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator= meant to not be accessable"); 40 return *this; 40 return *this; 41 } 41 } 42 42 43 G4bool G4StatMFMacroChemicalPotential::operato 43 G4bool G4StatMFMacroChemicalPotential::operator==(const G4StatMFMacroChemicalPotential & ) const 44 { 44 { 45 throw G4HadronicException(__FILE__, __LINE << 45 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator== meant to not be accessable"); 46 return false; 46 return false; 47 } 47 } 48 48 49 49 50 G4bool G4StatMFMacroChemicalPotential::operato 50 G4bool G4StatMFMacroChemicalPotential::operator!=(const G4StatMFMacroChemicalPotential & ) const 51 { 51 { 52 throw G4HadronicException(__FILE__, __LINE << 52 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator!= meant to not be accessable"); 53 return true; 53 return true; 54 } 54 } 55 55 >> 56 >> 57 >> 58 56 G4double G4StatMFMacroChemicalPotential::CalcC 59 G4double G4StatMFMacroChemicalPotential::CalcChemicalPotentialNu(void) 57 // Calculate Chemical potential \nu << 60 // Calculate Chemical potential \nu 58 { 61 { 59 G4Pow* g4calc = G4Pow::GetInstance(); << 62 G4double CP = ((3./5.)*elm_coupling/G4StatMFParameters::Getr0())* 60 G4double CP = G4StatMFParameters::GetCoulomb << 63 (1.0-1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1.0/3.0)); 61 64 62 // Initial value for _ChemPotentialNu << 65 // Initial value for _ChemPotentialNu 63 _ChemPotentialNu = (theZ/theA)*(8.0*G4StatMF << 66 _ChemPotentialNu = (theZ/theA)*(8.0*G4StatMFParameters::GetGamma0()+2.0*CP*std::pow(theA,2./3.)) - 64 +2.0*CP*g4calc->Z23(theA)) << 67 4.0*G4StatMFParameters::GetGamma0(); 65 - 4.0*G4StatMFParameters::GetGamma0(); << 66 68 67 G4double ChemPa = _ChemPotentialNu; << 69 68 G4double ChemPb = 0.5*_ChemPotentialNu; << 70 G4double ChemPa = _ChemPotentialNu; >> 71 G4double ChemPb = 0.5*_ChemPotentialNu; 69 72 70 G4double fChemPa = this->operator()(ChemPa); << 73 G4double fChemPa = this->operator()(ChemPa); 71 G4double fChemPb = this->operator()(ChemPb); << 74 G4double fChemPb = this->operator()(ChemPb); 72 75 73 if (fChemPa*fChemPb > 0.0) { << 76 if (fChemPa*fChemPb > 0.0) { 74 // bracketing the solution << 77 // bracketing the solution 75 if (fChemPa < 0.0) { << 78 if (fChemPa < 0.0) { 76 do { << 79 do { 77 ChemPb -= 1.5*std::abs(ChemPb-ChemPa); << 80 ChemPb -= 1.5*std::abs(ChemPb-ChemPa); 78 fChemPb = this->operator()(ChemPb); << 81 fChemPb = this->operator()(ChemPb); 79 // Loop checking, 05-Aug-2015, Vladimir Ivan << 82 } while (fChemPb < 0.0); 80 } while (fChemPb < 0.0); << 83 } else { 81 } else { << 84 do { 82 do { << 85 ChemPb += 1.5*std::abs(ChemPb-ChemPa); 83 ChemPb += 1.5*std::abs(ChemPb-ChemPa); << 86 fChemPb = this->operator()(ChemPb); 84 fChemPb = this->operator()(ChemPb); << 87 } while (fChemPb > 0.0); 85 // Loop checking, 05-Aug-2015, Vladimir Ivan << 88 } 86 } while (fChemPb > 0.0); << 87 } 89 } 88 } << 89 90 90 G4Solver<G4StatMFMacroChemicalPotential> * t << 91 G4Solver<G4StatMFMacroChemicalPotential> * theSolver = 91 new G4Solver<G4StatMFMacroChemicalPotentia << 92 new G4Solver<G4StatMFMacroChemicalPotential>(100,1.e-4); 92 theSolver->SetIntervalLimits(ChemPa,ChemPb); << 93 theSolver->SetIntervalLimits(ChemPa,ChemPb); 93 // if (!theSolver->Crenshaw(*this)) << 94 // if (!theSolver->Crenshaw(*this)) 94 if (!theSolver->Brent(*this)){ << 95 if (!theSolver->Brent(*this)){ 95 G4cout <<"G4StatMFMacroChemicalPotential:" << 96 G4cerr <<"G4StatMFMacroChemicalPotential:"<<" ChemPa="<<ChemPa<<" ChemPb="<<ChemPb<< G4endl; 96 <<" ChemPb="<<ChemPb<< G4endl; << 97 G4cerr <<"G4StatMFMacroChemicalPotential:"<<" fChemPa="<<fChemPa<<" fChemPb="<<fChemPb<< G4endl; 97 G4cout <<"G4StatMFMacroChemicalPotential:" << 98 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::CalcChemicalPotentialNu: I couldn't find the root."); 98 <<" fChemPb="<<fChemPb<< G4endl; << 99 } 99 throw G4HadronicException(__FILE__, __LINE << 100 _ChemPotentialNu = theSolver->GetRoot(); 100 } << 101 delete theSolver; 101 _ChemPotentialNu = theSolver->GetRoot(); << 102 return _ChemPotentialNu; 102 delete theSolver; << 103 return _ChemPotentialNu; << 104 } 103 } 105 104 106 105 107 106 108 G4double G4StatMFMacroChemicalPotential::CalcM 107 G4double G4StatMFMacroChemicalPotential::CalcMeanZ(const G4double nu) 109 { 108 { 110 std::vector<G4VStatMFMacroCluster*>::iterato 109 std::vector<G4VStatMFMacroCluster*>::iterator i; 111 for (i= _theClusters->begin()+1; i != _theCl 110 for (i= _theClusters->begin()+1; i != _theClusters->end(); ++i) 112 { 111 { 113 (*i)->CalcZARatio(nu); 112 (*i)->CalcZARatio(nu); 114 } 113 } 115 CalcChemicalPotentialMu(nu); 114 CalcChemicalPotentialMu(nu); 116 // This is important, the Z over A ratio for 115 // This is important, the Z over A ratio for proton and neutron depends on the 117 // chemical potential Mu, while for the firs 116 // chemical potential Mu, while for the first guess for Chemical potential mu 118 // some values of Z over A ratio. This is th 117 // some values of Z over A ratio. This is the reason for that. 119 (*_theClusters->begin())->CalcZARatio(nu); 118 (*_theClusters->begin())->CalcZARatio(nu); 120 119 121 G4double MeanZ = 0.0; 120 G4double MeanZ = 0.0; 122 G4int n = 1; 121 G4int n = 1; 123 for (i = _theClusters->begin(); i != _theClu 122 for (i = _theClusters->begin(); i != _theClusters->end(); ++i) 124 { 123 { 125 MeanZ += (n++) * (*i)->GetZARatio() * (* << 124 MeanZ += static_cast<G4double>(n++) * >> 125 (*i)->GetZARatio() * >> 126 (*i)->GetMeanMultiplicity(); 126 } 127 } 127 return MeanZ; 128 return MeanZ; 128 } 129 } 129 130 >> 131 130 void G4StatMFMacroChemicalPotential::CalcChemi 132 void G4StatMFMacroChemicalPotential::CalcChemicalPotentialMu(const G4double nu) 131 // Calculate Chemical potential \mu << 133 // Calculate Chemical potential \mu 132 // For that is necesary to calculate mean mult << 134 // For that is necesary to calculate mean multiplicities 133 { 135 { 134 G4StatMFMacroMultiplicity * theMultip = new 136 G4StatMFMacroMultiplicity * theMultip = new 135 G4StatMFMacroMultiplicity(theA,_Kappa,_Mea 137 G4StatMFMacroMultiplicity(theA,_Kappa,_MeanTemperature,nu,_theClusters); 136 138 137 _ChemPotentialMu = theMultip->CalcChemicalPo 139 _ChemPotentialMu = theMultip->CalcChemicalPotentialMu(); 138 _MeanMultiplicity = theMultip->GetMeanMultip 140 _MeanMultiplicity = theMultip->GetMeanMultiplicity(); 139 141 140 delete theMultip; 142 delete theMultip; 141 143 142 return; << 144 return; >> 145 143 } 146 } 144 147