Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroCanonical.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroCanonical.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroCanonical.cc (Version 9.6.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id$
 27 //                                                 28 //
 28 // by V. Lara                                      29 // by V. Lara
 29 // -------------------------------------------     30 // --------------------------------------------------------------------
 30 //                                                 31 //
 31 // Modified:                                       32 // Modified:
 32 // 25.07.08 I.Pshenichnov (in collaboration wi     33 // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor 
 33 //          Mishustin (FIAS, Frankfurt, INR, M     34 //          Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute, 
 34 //          Moscow, pshenich@fias.uni-frankfur     35 //          Moscow, pshenich@fias.uni-frankfurt.de) fixed infinite loop for 
 35 //          a fagment with Z=A; fixed memory l     36 //          a fagment with Z=A; fixed memory leak
 36                                                    37 
 37 #include "G4StatMFMacroCanonical.hh"               38 #include "G4StatMFMacroCanonical.hh"
 38 #include "G4PhysicalConstants.hh"                  39 #include "G4PhysicalConstants.hh"
 39 #include "G4SystemOfUnits.hh"                      40 #include "G4SystemOfUnits.hh"
 40 #include "G4Pow.hh"                                41 #include "G4Pow.hh"
 41                                                    42 
 42 // constructor                                     43 // constructor
 43 G4StatMFMacroCanonical::G4StatMFMacroCanonical     44 G4StatMFMacroCanonical::G4StatMFMacroCanonical(const G4Fragment & theFragment) 
 44 {                                                  45 {
 45                                                    46 
 46   // Get memory for clusters                       47   // Get memory for clusters
 47   _theClusters.push_back(new G4StatMFMacroNucl     48   _theClusters.push_back(new G4StatMFMacroNucleon);              // Size 1
 48   _theClusters.push_back(new G4StatMFMacroBiNu     49   _theClusters.push_back(new G4StatMFMacroBiNucleon);            // Size 2
 49   _theClusters.push_back(new G4StatMFMacroTriN     50   _theClusters.push_back(new G4StatMFMacroTriNucleon);           // Size 3
 50   _theClusters.push_back(new G4StatMFMacroTetr     51   _theClusters.push_back(new G4StatMFMacroTetraNucleon);         // Size 4
 51   for (G4int i = 4; i < theFragment.GetA_asInt     52   for (G4int i = 4; i < theFragment.GetA_asInt(); i++)   
 52     _theClusters.push_back(new G4StatMFMacroMu     53     _theClusters.push_back(new G4StatMFMacroMultiNucleon(i+1)); // Size 5 ... A
 53                                                    54   
 54   // Perform class initialization                  55   // Perform class initialization
 55   Initialize(theFragment);                         56   Initialize(theFragment);
 56                                                    57     
 57 }                                                  58 }
 58                                                    59 
 59 // destructor                                      60 // destructor
 60 G4StatMFMacroCanonical::~G4StatMFMacroCanonica     61 G4StatMFMacroCanonical::~G4StatMFMacroCanonical() 
 61 {                                                  62 {
 62   // garbage collection                            63   // garbage collection
 63   if (!_theClusters.empty())                       64   if (!_theClusters.empty()) 
 64     {                                              65     {
 65       std::for_each(_theClusters.begin(),_theC     66       std::for_each(_theClusters.begin(),_theClusters.end(),DeleteFragment());
 66     }                                              67     }
 67 }                                                  68 }
 68                                                    69 
 69 // Initialization method                           70 // Initialization method
 70 void G4StatMFMacroCanonical::Initialize(const      71 void G4StatMFMacroCanonical::Initialize(const G4Fragment & theFragment) 
 71 {                                                  72 {
 72                                                    73   
 73   G4int A = theFragment.GetA_asInt();              74   G4int A = theFragment.GetA_asInt();
 74   G4int Z = theFragment.GetZ_asInt();              75   G4int Z = theFragment.GetZ_asInt();
 75   G4double x = 1.0 - 2.0*Z/G4double(A);            76   G4double x = 1.0 - 2.0*Z/G4double(A);
 76   G4Pow* g4calc = G4Pow::GetInstance();        <<  77   G4Pow* g4pow = G4Pow::GetInstance();
 77                                                    78   
 78   // Free Internal energy at T = 0                 79   // Free Internal energy at T = 0
 79   __FreeInternalE0 = A*( -G4StatMFParameters:: <<  80   __FreeInternalE0 = A*( -G4StatMFParameters::GetE0() +          // Volume term (for T = 0)
 80        G4StatMFParameters::GetGamma0()*x*x) // <<  81        G4StatMFParameters::GetGamma0()*x*x)       // Symmetry term
 81     + G4StatMFParameters::GetBeta0()*g4calc->Z <<  82        +
 82     0.6*elm_coupling*Z*Z/(G4StatMFParameters:: <<  83     G4StatMFParameters::GetBeta0()*g4pow->Z23(A) +              // Surface term (for T = 0)
 83         g4calc->Z13(A));                       <<  84     (3.0/5.0)*elm_coupling*Z*Z/(G4StatMFParameters::Getr0()*     // Coulomb term 
                                                   >>  85         g4pow->Z13(A));
 84                                                    86   
 85   CalculateTemperature(theFragment);               87   CalculateTemperature(theFragment);
                                                   >>  88   
 86   return;                                          89   return;
 87 }                                                  90 }
 88                                                    91 
 89 void G4StatMFMacroCanonical::CalculateTemperat     92 void G4StatMFMacroCanonical::CalculateTemperature(const G4Fragment & theFragment)
 90 {                                                  93 {
 91   // Excitation Energy                             94   // Excitation Energy
 92   G4double U = theFragment.GetExcitationEnergy     95   G4double U = theFragment.GetExcitationEnergy();
 93                                                    96   
 94   G4int A = theFragment.GetA_asInt();              97   G4int A = theFragment.GetA_asInt();
 95   G4int Z = theFragment.GetZ_asInt();              98   G4int Z = theFragment.GetZ_asInt();
 96                                                    99   
 97   // Fragment Multiplicity                        100   // Fragment Multiplicity
 98   G4double FragMult = std::max((1.0+(2.31/MeV)    101   G4double FragMult = std::max((1.0+(2.31/MeV)*(U/A - 3.5*MeV))*A/100.0, 2.0);
 99                                                   102 
                                                   >> 103 
100   // Parameter Kappa                              104   // Parameter Kappa
101   G4Pow* g4calc = G4Pow::GetInstance();        << 105   _Kappa = (1.0+elm_coupling*(std::pow(FragMult,1./3.)-1)/
102   _Kappa = (1.0+elm_coupling*(g4calc->A13(Frag << 106       (G4StatMFParameters::Getr0()*G4Pow::GetInstance()->Z13(A)));
103       (G4StatMFParameters::Getr0()*g4calc->Z13 << 
104   _Kappa = _Kappa*_Kappa*_Kappa - 1.0;            107   _Kappa = _Kappa*_Kappa*_Kappa - 1.0;
                                                   >> 108 
105                                                   109   
106   G4StatMFMacroTemperature * theTemp = new        110   G4StatMFMacroTemperature * theTemp = new  
107     G4StatMFMacroTemperature(A,Z,U,__FreeInter    111     G4StatMFMacroTemperature(A,Z,U,__FreeInternalE0,_Kappa,&_theClusters);
108                                                   112   
109   __MeanTemperature = theTemp->CalcTemperature    113   __MeanTemperature = theTemp->CalcTemperature();
110   _ChemPotentialNu = theTemp->GetChemicalPoten    114   _ChemPotentialNu = theTemp->GetChemicalPotentialNu();
111   _ChemPotentialMu = theTemp->GetChemicalPoten    115   _ChemPotentialMu = theTemp->GetChemicalPotentialMu();
112   __MeanMultiplicity = theTemp->GetMeanMultipl    116   __MeanMultiplicity = theTemp->GetMeanMultiplicity();
113   __MeanEntropy = theTemp->GetEntropy();          117   __MeanEntropy = theTemp->GetEntropy();
114                                                   118   
115   delete theTemp;                                 119   delete theTemp;     
116                                                   120   
117   return;                                         121   return;
118 }                                                 122 }
119                                                   123 
                                                   >> 124 
120 // -------------------------------------------    125 // --------------------------------------------------------------------------
121                                                   126 
122 G4StatMFChannel * G4StatMFMacroCanonical::Choo    127 G4StatMFChannel * G4StatMFMacroCanonical::ChooseAandZ(const G4Fragment &theFragment)
123 // Calculate total fragments multiplicity, fra << 128     // Calculate total fragments multiplicity, fragment atomic numbers and charges
124 {                                                 129 {
125   G4int A = theFragment.GetA_asInt();             130   G4int A = theFragment.GetA_asInt();
126   G4int Z = theFragment.GetZ_asInt();             131   G4int Z = theFragment.GetZ_asInt();
127                                                   132   
128   std::vector<G4int> ANumbers(A);                 133   std::vector<G4int> ANumbers(A);
129                                                   134   
130   G4double Multiplicity = ChooseA(A,ANumbers);    135   G4double Multiplicity = ChooseA(A,ANumbers);
131                                                   136   
132   std::vector<G4int> FragmentsA;                  137   std::vector<G4int> FragmentsA;
133                                                   138   
134   G4int i = 0;                                    139   G4int i = 0;  
135   for (i = 0; i < A; i++)                      << 140     for (i = 0; i < A; i++) 
136     {                                          << 141       {
137       for (G4int j = 0; j < ANumbers[i]; j++)  << 142   for (G4int j = 0; j < ANumbers[i]; j++) FragmentsA.push_back(i+1);
138     }                                          << 143       }
139                                                << 144     
140   // Sort fragments in decreasing order        << 145     // Sort fragments in decreasing order
141   G4int im = 0;                                << 146     G4int im = 0;
142   for (G4int j = 0; j < Multiplicity; j++)     << 147     for (G4int j = 0; j < Multiplicity; j++) 
143     {                                          << 148       {
144       G4int FragmentsAMax = 0;                 << 149   G4int FragmentsAMax = 0;
145       im = j;                                  << 150   im = j;
146       for (i = j; i < Multiplicity; i++)       << 151   for (i = j; i < Multiplicity; i++) 
147   {                                            << 152     {
148     if (FragmentsA[i] <= FragmentsAMax) { cont << 153       if (FragmentsA[i] <= FragmentsAMax) { continue; }
149     else                                       << 154       else 
150       {                                        << 155         {
151         im = i;                                << 156     im = i;
152         FragmentsAMax = FragmentsA[im];        << 157     FragmentsAMax = FragmentsA[im];
153       }                                        << 158         }
154   }                                            << 159     }
155       if (im != j)                             << 160   
156   {                                            << 161   if (im != j) 
157     FragmentsA[im] = FragmentsA[j];            << 162     {
158     FragmentsA[j]  = FragmentsAMax;            << 163       FragmentsA[im] = FragmentsA[j];
159   }                                            << 164       FragmentsA[j]  = FragmentsAMax;
160     }                                          << 165     }
161   return ChooseZ(Z,FragmentsA);                << 166       }
                                                   >> 167     
                                                   >> 168     return ChooseZ(Z,FragmentsA);
162 }                                                 169 }
163                                                   170 
                                                   >> 171 
164 G4double G4StatMFMacroCanonical::ChooseA(G4int    172 G4double G4StatMFMacroCanonical::ChooseA(G4int A, std::vector<G4int> & ANumbers)
165   // Determines fragments multiplicities and c    173   // Determines fragments multiplicities and compute total fragment multiplicity
166 {                                                 174 {
167   G4double multiplicity = 0.0;                    175   G4double multiplicity = 0.0;
168   G4int i;                                        176   G4int i;
169                                                   177     
170   std::vector<G4double> AcumMultiplicity;         178   std::vector<G4double> AcumMultiplicity;
171   AcumMultiplicity.reserve(A);                    179   AcumMultiplicity.reserve(A);
172                                                   180 
173   AcumMultiplicity.push_back((*(_theClusters.b    181   AcumMultiplicity.push_back((*(_theClusters.begin()))->GetMeanMultiplicity());
174   for (std::vector<G4VStatMFMacroCluster*>::it    182   for (std::vector<G4VStatMFMacroCluster*>::iterator it = _theClusters.begin()+1;
175        it != _theClusters.end(); ++it)            183        it != _theClusters.end(); ++it)
176     {                                             184     {
177       AcumMultiplicity.push_back((*it)->GetMea    185       AcumMultiplicity.push_back((*it)->GetMeanMultiplicity()+AcumMultiplicity.back());
178     }                                             186     }
179                                                   187   
180   G4int CheckA;                                   188   G4int CheckA;
181   do {                                            189   do {
182     CheckA = -1;                                  190     CheckA = -1;
183     G4int SumA = 0;                               191     G4int SumA = 0;
184     G4int ThisOne = 0;                            192     G4int ThisOne = 0;
185     multiplicity = 0.0;                           193     multiplicity = 0.0;
186     for (i = 0; i < A; i++) ANumbers[i] = 0;      194     for (i = 0; i < A; i++) ANumbers[i] = 0;
187     do {                                          195     do {
188       G4double RandNumber = G4UniformRand()*__    196       G4double RandNumber = G4UniformRand()*__MeanMultiplicity;
189       for (i = 0; i < A; i++) {                   197       for (i = 0; i < A; i++) {
190   if (RandNumber < AcumMultiplicity[i]) {         198   if (RandNumber < AcumMultiplicity[i]) {
191     ThisOne = i;                                  199     ThisOne = i;
192     break;                                        200     break;
193   }                                               201   }
194       }                                           202       }
195       multiplicity++;                             203       multiplicity++;
196       ANumbers[ThisOne] = ANumbers[ThisOne]+1;    204       ANumbers[ThisOne] = ANumbers[ThisOne]+1;
197       SumA += ThisOne+1;                          205       SumA += ThisOne+1;
198       CheckA = A - SumA;                          206       CheckA = A - SumA;
199                                                   207       
200       // Loop checking, 05-Aug-2015, Vladimir  << 
201     } while (CheckA > 0);                         208     } while (CheckA > 0);
202                                                   209     
203     // Loop checking, 05-Aug-2015, Vladimir Iv << 210   } while (CheckA < 0 || std::abs(__MeanMultiplicity - multiplicity) > std::sqrt(__MeanMultiplicity) + 1./2.);
204   } while (CheckA < 0 || std::abs(__MeanMultip << 
205                                                   211   
206   return multiplicity;                            212   return multiplicity;
207 }                                                 213 }
208                                                   214 
                                                   >> 215 
209 G4StatMFChannel * G4StatMFMacroCanonical::Choo    216 G4StatMFChannel * G4StatMFMacroCanonical::ChooseZ(G4int & Z, 
210               std::vector<G4int> & FragmentsA)    217               std::vector<G4int> & FragmentsA)
211     //                                            218     // 
212 {                                                 219 {
213   G4Pow* g4calc = G4Pow::GetInstance();        << 220   G4Pow* g4pow = G4Pow::GetInstance();
214   std::vector<G4int> FragmentsZ;                  221   std::vector<G4int> FragmentsZ;
215                                                   222   
216   G4int DeltaZ = 0;                               223   G4int DeltaZ = 0;
217   G4double CP =  G4StatMFParameters::GetCoulom << 224   G4double CP = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
218   G4int multiplicity = (G4int)FragmentsA.size( << 225     (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
219                                                   226   
220   do {                                         << 227   G4int multiplicity = FragmentsA.size();
221     FragmentsZ.clear();                        << 228   
222     G4int SumZ = 0;                            << 229   do 
223     for (G4int i = 0; i < multiplicity; ++i)   << 230     {
224       {                                        << 231       FragmentsZ.clear();
225   G4int A = FragmentsA[i];                     << 232       G4int SumZ = 0;
226   if (A <= 1)                                  << 233       for (G4int i = 0; i < multiplicity; i++) 
227     {                                          << 234   {
228       G4double RandNumber = G4UniformRand();   << 235     G4int A = FragmentsA[i];
229       if (RandNumber < (*_theClusters.begin()) << 236     if (A <= 1) 
230         {                                      << 237       {
231     FragmentsZ.push_back(1);                   << 238         G4double RandNumber = G4UniformRand();
232     SumZ += FragmentsZ[i];                     << 239         if (RandNumber < (*_theClusters.begin())->GetZARatio()) 
233         }                                      << 240     {
234       else FragmentsZ.push_back(0);            << 241       FragmentsZ.push_back(1);
235     }                                          << 242       SumZ += FragmentsZ[i];
236   else                                         << 243     } 
237     {                                          << 244         else FragmentsZ.push_back(0);
238       G4double RandZ;                          << 245       } 
239       G4double CC = 8.0*G4StatMFParameters::Ge << 246     else 
240         + 2*CP*g4calc->Z23(FragmentsA[i]);     << 247       {
241       G4double ZMean;                          << 248         G4double RandZ;
242       if (FragmentsA[i] > 1 && FragmentsA[i] < << 249         G4double CC = 8.0*G4StatMFParameters::GetGamma0()+2.0*CP*g4pow->Z23(FragmentsA[i]);
243       else {                                   << 250         G4double ZMean;
244         ZMean = FragmentsA[i]*(4.0*G4StatMFPar << 251         if (FragmentsA[i] > 1 && FragmentsA[i] < 5) { ZMean = 0.5*FragmentsA[i]; }
245              + _ChemPotentialNu)/CC;           << 252         else ZMean = FragmentsA[i]*(4.0*G4StatMFParameters::GetGamma0()+_ChemPotentialNu)/CC;
                                                   >> 253         G4double ZDispersion = std::sqrt(FragmentsA[i]*__MeanTemperature/CC);
                                                   >> 254         G4int z;
                                                   >> 255         do 
                                                   >> 256     {
                                                   >> 257       RandZ = G4RandGauss::shoot(ZMean,ZDispersion);
                                                   >> 258       z = static_cast<G4int>(RandZ+0.5);
                                                   >> 259     } while (z < 0 || z > A);
                                                   >> 260         FragmentsZ.push_back(z);
                                                   >> 261         SumZ += z;
246       }                                           262       }
247       G4double ZDispersion = std::sqrt(Fragmen << 263   }
248       G4int z;                                 << 264       DeltaZ = Z - SumZ;
249       do                                       << 265     }
250         {                                      << 266   while (std::abs(DeltaZ) > 1);
251     RandZ = G4RandGauss::shoot(ZMean,ZDispersi << 
252     z = G4lrint(RandZ+0.5);                    << 
253     // Loop checking, 05-Aug-2015, Vladimir Iv << 
254         } while (z < 0 || z > A);              << 
255       FragmentsZ.push_back(z);                 << 
256       SumZ += z;                               << 
257     }                                          << 
258       }                                        << 
259     DeltaZ = Z - SumZ;                         << 
260   // Loop checking, 05-Aug-2015, Vladimir Ivan << 
261   } while (std::abs(DeltaZ) > 1);              << 
262                                                   267     
263   // DeltaZ can be 0, 1 or -1                     268   // DeltaZ can be 0, 1 or -1
264   G4int idx = 0;                                  269   G4int idx = 0;
265   if (DeltaZ < 0.0)                               270   if (DeltaZ < 0.0)
266     {                                             271     {
267       while (FragmentsZ[idx] < 1) { ++idx; }      272       while (FragmentsZ[idx] < 1) { ++idx; }
268     }                                             273     }
269   FragmentsZ[idx] += DeltaZ;                      274   FragmentsZ[idx] += DeltaZ;
270                                                   275   
271   G4StatMFChannel * theChannel = new G4StatMFC    276   G4StatMFChannel * theChannel = new G4StatMFChannel;
272   for (G4int i = multiplicity-1; i >= 0; --i)  << 277   for (G4int i = multiplicity-1; i >= 0; i--) 
273     {                                             278     {
274       theChannel->CreateFragment(FragmentsA[i]    279       theChannel->CreateFragment(FragmentsA[i],FragmentsZ[i]);
275     }                                             280     }
276                                                   281  
277   return theChannel;                              282   return theChannel;
278 }                                                 283 }
279                                                   284