Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // 27 // 28 // by V. Lara 28 // by V. Lara 29 // ------------------------------------------- 29 // -------------------------------------------------------------------- 30 // 30 // 31 // Modified: 31 // Modified: 32 // 25.07.08 I.Pshenichnov (in collaboration wi 32 // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor 33 // Mishustin (FIAS, Frankfurt, INR, M 33 // Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute, 34 // Moscow, pshenich@fias.uni-frankfur 34 // Moscow, pshenich@fias.uni-frankfurt.de) fixed infinite loop for 35 // a fagment with Z=A; fixed memory l 35 // a fagment with Z=A; fixed memory leak 36 36 37 #include "G4StatMFMacroCanonical.hh" 37 #include "G4StatMFMacroCanonical.hh" 38 #include "G4PhysicalConstants.hh" 38 #include "G4PhysicalConstants.hh" 39 #include "G4SystemOfUnits.hh" 39 #include "G4SystemOfUnits.hh" 40 #include "G4Pow.hh" 40 #include "G4Pow.hh" 41 41 42 // constructor 42 // constructor 43 G4StatMFMacroCanonical::G4StatMFMacroCanonical 43 G4StatMFMacroCanonical::G4StatMFMacroCanonical(const G4Fragment & theFragment) 44 { 44 { 45 45 46 // Get memory for clusters 46 // Get memory for clusters 47 _theClusters.push_back(new G4StatMFMacroNucl 47 _theClusters.push_back(new G4StatMFMacroNucleon); // Size 1 48 _theClusters.push_back(new G4StatMFMacroBiNu 48 _theClusters.push_back(new G4StatMFMacroBiNucleon); // Size 2 49 _theClusters.push_back(new G4StatMFMacroTriN 49 _theClusters.push_back(new G4StatMFMacroTriNucleon); // Size 3 50 _theClusters.push_back(new G4StatMFMacroTetr 50 _theClusters.push_back(new G4StatMFMacroTetraNucleon); // Size 4 51 for (G4int i = 4; i < theFragment.GetA_asInt 51 for (G4int i = 4; i < theFragment.GetA_asInt(); i++) 52 _theClusters.push_back(new G4StatMFMacroMu 52 _theClusters.push_back(new G4StatMFMacroMultiNucleon(i+1)); // Size 5 ... A 53 53 54 // Perform class initialization 54 // Perform class initialization 55 Initialize(theFragment); 55 Initialize(theFragment); 56 56 57 } 57 } 58 58 59 // destructor 59 // destructor 60 G4StatMFMacroCanonical::~G4StatMFMacroCanonica 60 G4StatMFMacroCanonical::~G4StatMFMacroCanonical() 61 { 61 { 62 // garbage collection 62 // garbage collection 63 if (!_theClusters.empty()) 63 if (!_theClusters.empty()) 64 { 64 { 65 std::for_each(_theClusters.begin(),_theC 65 std::for_each(_theClusters.begin(),_theClusters.end(),DeleteFragment()); 66 } 66 } 67 } 67 } 68 68 69 // Initialization method 69 // Initialization method 70 void G4StatMFMacroCanonical::Initialize(const 70 void G4StatMFMacroCanonical::Initialize(const G4Fragment & theFragment) 71 { 71 { 72 72 73 G4int A = theFragment.GetA_asInt(); 73 G4int A = theFragment.GetA_asInt(); 74 G4int Z = theFragment.GetZ_asInt(); 74 G4int Z = theFragment.GetZ_asInt(); 75 G4double x = 1.0 - 2.0*Z/G4double(A); 75 G4double x = 1.0 - 2.0*Z/G4double(A); 76 G4Pow* g4calc = G4Pow::GetInstance(); 76 G4Pow* g4calc = G4Pow::GetInstance(); 77 77 78 // Free Internal energy at T = 0 78 // Free Internal energy at T = 0 79 __FreeInternalE0 = A*( -G4StatMFParameters:: 79 __FreeInternalE0 = A*( -G4StatMFParameters::GetE0() + // Volume term (for T = 0) 80 G4StatMFParameters::GetGamma0()*x*x) // 80 G4StatMFParameters::GetGamma0()*x*x) // Symmetry term 81 + G4StatMFParameters::GetBeta0()*g4calc->Z 81 + G4StatMFParameters::GetBeta0()*g4calc->Z23(A) + // Surface term (for T = 0) 82 0.6*elm_coupling*Z*Z/(G4StatMFParameters:: 82 0.6*elm_coupling*Z*Z/(G4StatMFParameters::Getr0()* // Coulomb term 83 g4calc->Z13(A)); 83 g4calc->Z13(A)); 84 84 85 CalculateTemperature(theFragment); 85 CalculateTemperature(theFragment); 86 return; 86 return; 87 } 87 } 88 88 89 void G4StatMFMacroCanonical::CalculateTemperat 89 void G4StatMFMacroCanonical::CalculateTemperature(const G4Fragment & theFragment) 90 { 90 { 91 // Excitation Energy 91 // Excitation Energy 92 G4double U = theFragment.GetExcitationEnergy 92 G4double U = theFragment.GetExcitationEnergy(); 93 93 94 G4int A = theFragment.GetA_asInt(); 94 G4int A = theFragment.GetA_asInt(); 95 G4int Z = theFragment.GetZ_asInt(); 95 G4int Z = theFragment.GetZ_asInt(); 96 96 97 // Fragment Multiplicity 97 // Fragment Multiplicity 98 G4double FragMult = std::max((1.0+(2.31/MeV) 98 G4double FragMult = std::max((1.0+(2.31/MeV)*(U/A - 3.5*MeV))*A/100.0, 2.0); 99 99 100 // Parameter Kappa 100 // Parameter Kappa 101 G4Pow* g4calc = G4Pow::GetInstance(); 101 G4Pow* g4calc = G4Pow::GetInstance(); 102 _Kappa = (1.0+elm_coupling*(g4calc->A13(Frag 102 _Kappa = (1.0+elm_coupling*(g4calc->A13(FragMult)-1)/ 103 (G4StatMFParameters::Getr0()*g4calc->Z13 103 (G4StatMFParameters::Getr0()*g4calc->Z13(A))); 104 _Kappa = _Kappa*_Kappa*_Kappa - 1.0; 104 _Kappa = _Kappa*_Kappa*_Kappa - 1.0; 105 105 106 G4StatMFMacroTemperature * theTemp = new 106 G4StatMFMacroTemperature * theTemp = new 107 G4StatMFMacroTemperature(A,Z,U,__FreeInter 107 G4StatMFMacroTemperature(A,Z,U,__FreeInternalE0,_Kappa,&_theClusters); 108 108 109 __MeanTemperature = theTemp->CalcTemperature 109 __MeanTemperature = theTemp->CalcTemperature(); 110 _ChemPotentialNu = theTemp->GetChemicalPoten 110 _ChemPotentialNu = theTemp->GetChemicalPotentialNu(); 111 _ChemPotentialMu = theTemp->GetChemicalPoten 111 _ChemPotentialMu = theTemp->GetChemicalPotentialMu(); 112 __MeanMultiplicity = theTemp->GetMeanMultipl 112 __MeanMultiplicity = theTemp->GetMeanMultiplicity(); 113 __MeanEntropy = theTemp->GetEntropy(); 113 __MeanEntropy = theTemp->GetEntropy(); 114 114 115 delete theTemp; 115 delete theTemp; 116 116 117 return; 117 return; 118 } 118 } 119 119 120 // ------------------------------------------- 120 // -------------------------------------------------------------------------- 121 121 122 G4StatMFChannel * G4StatMFMacroCanonical::Choo 122 G4StatMFChannel * G4StatMFMacroCanonical::ChooseAandZ(const G4Fragment &theFragment) 123 // Calculate total fragments multiplicity, fra 123 // Calculate total fragments multiplicity, fragment atomic numbers and charges 124 { 124 { 125 G4int A = theFragment.GetA_asInt(); 125 G4int A = theFragment.GetA_asInt(); 126 G4int Z = theFragment.GetZ_asInt(); 126 G4int Z = theFragment.GetZ_asInt(); 127 127 128 std::vector<G4int> ANumbers(A); 128 std::vector<G4int> ANumbers(A); 129 129 130 G4double Multiplicity = ChooseA(A,ANumbers); 130 G4double Multiplicity = ChooseA(A,ANumbers); 131 131 132 std::vector<G4int> FragmentsA; 132 std::vector<G4int> FragmentsA; 133 133 134 G4int i = 0; 134 G4int i = 0; 135 for (i = 0; i < A; i++) 135 for (i = 0; i < A; i++) 136 { 136 { 137 for (G4int j = 0; j < ANumbers[i]; j++) 137 for (G4int j = 0; j < ANumbers[i]; j++) FragmentsA.push_back(i+1); 138 } 138 } 139 139 140 // Sort fragments in decreasing order 140 // Sort fragments in decreasing order 141 G4int im = 0; 141 G4int im = 0; 142 for (G4int j = 0; j < Multiplicity; j++) 142 for (G4int j = 0; j < Multiplicity; j++) 143 { 143 { 144 G4int FragmentsAMax = 0; 144 G4int FragmentsAMax = 0; 145 im = j; 145 im = j; 146 for (i = j; i < Multiplicity; i++) 146 for (i = j; i < Multiplicity; i++) 147 { 147 { 148 if (FragmentsA[i] <= FragmentsAMax) { cont 148 if (FragmentsA[i] <= FragmentsAMax) { continue; } 149 else 149 else 150 { 150 { 151 im = i; 151 im = i; 152 FragmentsAMax = FragmentsA[im]; 152 FragmentsAMax = FragmentsA[im]; 153 } 153 } 154 } 154 } 155 if (im != j) 155 if (im != j) 156 { 156 { 157 FragmentsA[im] = FragmentsA[j]; 157 FragmentsA[im] = FragmentsA[j]; 158 FragmentsA[j] = FragmentsAMax; 158 FragmentsA[j] = FragmentsAMax; 159 } 159 } 160 } 160 } 161 return ChooseZ(Z,FragmentsA); 161 return ChooseZ(Z,FragmentsA); 162 } 162 } 163 163 164 G4double G4StatMFMacroCanonical::ChooseA(G4int 164 G4double G4StatMFMacroCanonical::ChooseA(G4int A, std::vector<G4int> & ANumbers) 165 // Determines fragments multiplicities and c 165 // Determines fragments multiplicities and compute total fragment multiplicity 166 { 166 { 167 G4double multiplicity = 0.0; 167 G4double multiplicity = 0.0; 168 G4int i; 168 G4int i; 169 169 170 std::vector<G4double> AcumMultiplicity; 170 std::vector<G4double> AcumMultiplicity; 171 AcumMultiplicity.reserve(A); 171 AcumMultiplicity.reserve(A); 172 172 173 AcumMultiplicity.push_back((*(_theClusters.b 173 AcumMultiplicity.push_back((*(_theClusters.begin()))->GetMeanMultiplicity()); 174 for (std::vector<G4VStatMFMacroCluster*>::it 174 for (std::vector<G4VStatMFMacroCluster*>::iterator it = _theClusters.begin()+1; 175 it != _theClusters.end(); ++it) 175 it != _theClusters.end(); ++it) 176 { 176 { 177 AcumMultiplicity.push_back((*it)->GetMea 177 AcumMultiplicity.push_back((*it)->GetMeanMultiplicity()+AcumMultiplicity.back()); 178 } 178 } 179 179 180 G4int CheckA; 180 G4int CheckA; 181 do { 181 do { 182 CheckA = -1; 182 CheckA = -1; 183 G4int SumA = 0; 183 G4int SumA = 0; 184 G4int ThisOne = 0; 184 G4int ThisOne = 0; 185 multiplicity = 0.0; 185 multiplicity = 0.0; 186 for (i = 0; i < A; i++) ANumbers[i] = 0; 186 for (i = 0; i < A; i++) ANumbers[i] = 0; 187 do { 187 do { 188 G4double RandNumber = G4UniformRand()*__ 188 G4double RandNumber = G4UniformRand()*__MeanMultiplicity; 189 for (i = 0; i < A; i++) { 189 for (i = 0; i < A; i++) { 190 if (RandNumber < AcumMultiplicity[i]) { 190 if (RandNumber < AcumMultiplicity[i]) { 191 ThisOne = i; 191 ThisOne = i; 192 break; 192 break; 193 } 193 } 194 } 194 } 195 multiplicity++; 195 multiplicity++; 196 ANumbers[ThisOne] = ANumbers[ThisOne]+1; 196 ANumbers[ThisOne] = ANumbers[ThisOne]+1; 197 SumA += ThisOne+1; 197 SumA += ThisOne+1; 198 CheckA = A - SumA; 198 CheckA = A - SumA; 199 199 200 // Loop checking, 05-Aug-2015, Vladimir 200 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 201 } while (CheckA > 0); 201 } while (CheckA > 0); 202 202 203 // Loop checking, 05-Aug-2015, Vladimir Iv 203 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 204 } while (CheckA < 0 || std::abs(__MeanMultip 204 } while (CheckA < 0 || std::abs(__MeanMultiplicity - multiplicity) > std::sqrt(__MeanMultiplicity) + 0.5); 205 205 206 return multiplicity; 206 return multiplicity; 207 } 207 } 208 208 209 G4StatMFChannel * G4StatMFMacroCanonical::Choo 209 G4StatMFChannel * G4StatMFMacroCanonical::ChooseZ(G4int & Z, 210 std::vector<G4int> & FragmentsA) 210 std::vector<G4int> & FragmentsA) 211 // 211 // 212 { 212 { 213 G4Pow* g4calc = G4Pow::GetInstance(); 213 G4Pow* g4calc = G4Pow::GetInstance(); 214 std::vector<G4int> FragmentsZ; 214 std::vector<G4int> FragmentsZ; 215 215 216 G4int DeltaZ = 0; 216 G4int DeltaZ = 0; 217 G4double CP = G4StatMFParameters::GetCoulom 217 G4double CP = G4StatMFParameters::GetCoulomb(); 218 G4int multiplicity = (G4int)FragmentsA.size( 218 G4int multiplicity = (G4int)FragmentsA.size(); 219 219 220 do { 220 do { 221 FragmentsZ.clear(); 221 FragmentsZ.clear(); 222 G4int SumZ = 0; 222 G4int SumZ = 0; 223 for (G4int i = 0; i < multiplicity; ++i) 223 for (G4int i = 0; i < multiplicity; ++i) 224 { 224 { 225 G4int A = FragmentsA[i]; 225 G4int A = FragmentsA[i]; 226 if (A <= 1) 226 if (A <= 1) 227 { 227 { 228 G4double RandNumber = G4UniformRand(); 228 G4double RandNumber = G4UniformRand(); 229 if (RandNumber < (*_theClusters.begin()) 229 if (RandNumber < (*_theClusters.begin())->GetZARatio()) 230 { 230 { 231 FragmentsZ.push_back(1); 231 FragmentsZ.push_back(1); 232 SumZ += FragmentsZ[i]; 232 SumZ += FragmentsZ[i]; 233 } 233 } 234 else FragmentsZ.push_back(0); 234 else FragmentsZ.push_back(0); 235 } 235 } 236 else 236 else 237 { 237 { 238 G4double RandZ; 238 G4double RandZ; 239 G4double CC = 8.0*G4StatMFParameters::Ge 239 G4double CC = 8.0*G4StatMFParameters::GetGamma0() 240 + 2*CP*g4calc->Z23(FragmentsA[i]); 240 + 2*CP*g4calc->Z23(FragmentsA[i]); 241 G4double ZMean; 241 G4double ZMean; 242 if (FragmentsA[i] > 1 && FragmentsA[i] < 242 if (FragmentsA[i] > 1 && FragmentsA[i] < 5) { ZMean = 0.5*FragmentsA[i]; } 243 else { 243 else { 244 ZMean = FragmentsA[i]*(4.0*G4StatMFPar 244 ZMean = FragmentsA[i]*(4.0*G4StatMFParameters::GetGamma0() 245 + _ChemPotentialNu)/CC; 245 + _ChemPotentialNu)/CC; 246 } 246 } 247 G4double ZDispersion = std::sqrt(Fragmen 247 G4double ZDispersion = std::sqrt(FragmentsA[i]*__MeanTemperature/CC); 248 G4int z; 248 G4int z; 249 do 249 do 250 { 250 { 251 RandZ = G4RandGauss::shoot(ZMean,ZDispersi 251 RandZ = G4RandGauss::shoot(ZMean,ZDispersion); 252 z = G4lrint(RandZ+0.5); 252 z = G4lrint(RandZ+0.5); 253 // Loop checking, 05-Aug-2015, Vladimir Iv 253 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 254 } while (z < 0 || z > A); 254 } while (z < 0 || z > A); 255 FragmentsZ.push_back(z); 255 FragmentsZ.push_back(z); 256 SumZ += z; 256 SumZ += z; 257 } 257 } 258 } 258 } 259 DeltaZ = Z - SumZ; 259 DeltaZ = Z - SumZ; 260 // Loop checking, 05-Aug-2015, Vladimir Ivan 260 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 261 } while (std::abs(DeltaZ) > 1); 261 } while (std::abs(DeltaZ) > 1); 262 262 263 // DeltaZ can be 0, 1 or -1 263 // DeltaZ can be 0, 1 or -1 264 G4int idx = 0; 264 G4int idx = 0; 265 if (DeltaZ < 0.0) 265 if (DeltaZ < 0.0) 266 { 266 { 267 while (FragmentsZ[idx] < 1) { ++idx; } 267 while (FragmentsZ[idx] < 1) { ++idx; } 268 } 268 } 269 FragmentsZ[idx] += DeltaZ; 269 FragmentsZ[idx] += DeltaZ; 270 270 271 G4StatMFChannel * theChannel = new G4StatMFC 271 G4StatMFChannel * theChannel = new G4StatMFChannel; 272 for (G4int i = multiplicity-1; i >= 0; --i) 272 for (G4int i = multiplicity-1; i >= 0; --i) 273 { 273 { 274 theChannel->CreateFragment(FragmentsA[i] 274 theChannel->CreateFragment(FragmentsA[i],FragmentsZ[i]); 275 } 275 } 276 276 277 return theChannel; 277 return theChannel; 278 } 278 } 279 279