Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroBiNucleon.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroBiNucleon.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroBiNucleon.cc (Version 6.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 //                                                 23 //
                                                   >>  24 // $Id: G4StatMFMacroBiNucleon.cc,v 1.2 2003/11/03 17:53:05 hpw Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-06-00-patch-01 $
 27 //                                                 26 //
 28 // Hadronic Process: Nuclear De-excitations        27 // Hadronic Process: Nuclear De-excitations
 29 // by V. Lara                                      28 // by V. Lara
 30                                                    29 
 31 #include "G4StatMFMacroBiNucleon.hh"               30 #include "G4StatMFMacroBiNucleon.hh"
 32 #include "G4StatMFParameters.hh"               << 
 33 #include "G4PhysicalConstants.hh"              << 
 34 #include "G4SystemOfUnits.hh"                  << 
 35 #include "G4Log.hh"                            << 
 36 #include "G4Exp.hh"                            << 
 37 #include "G4Pow.hh"                            << 
 38                                                    31 
 39 // Operators                                       32 // Operators
 40                                                    33 
 41 static const G4double degeneracy = 3.0;        << 
 42                                                << 
 43 G4StatMFMacroBiNucleon & G4StatMFMacroBiNucleo     34 G4StatMFMacroBiNucleon & G4StatMFMacroBiNucleon::
 44 operator=(const G4StatMFMacroBiNucleon & )         35 operator=(const G4StatMFMacroBiNucleon & )
 45 {                                                  36 {
 46     throw G4HadronicException(__FILE__, __LINE <<  37     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator= meant to not be accessable");
 47     return *this;                                  38     return *this;
 48 }                                                  39 }
 49                                                    40 
                                                   >>  41 
 50 G4bool G4StatMFMacroBiNucleon::operator==(cons     42 G4bool G4StatMFMacroBiNucleon::operator==(const G4StatMFMacroBiNucleon & ) const
 51 {                                                  43 {
 52     throw G4HadronicException(__FILE__, __LINE <<  44     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator== meant to not be accessable");
 53     return false;                                  45     return false;
 54 }                                                  46 }
 55                                                    47  
 56                                                    48 
 57 G4bool G4StatMFMacroBiNucleon::operator!=(cons     49 G4bool G4StatMFMacroBiNucleon::operator!=(const G4StatMFMacroBiNucleon & ) const
 58 {                                                  50 {
 59     throw G4HadronicException(__FILE__, __LINE <<  51     throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator!= meant to not be accessable");
 60     return true;                                   52     return true;
 61 }                                                  53 }
 62                                                    54 
 63 G4double G4StatMFMacroBiNucleon::CalcMeanMulti <<  55 
 64                   const G4double mu,           <<  56 G4double G4StatMFMacroBiNucleon::CalcMeanMultiplicity(const G4double FreeVol, const G4double mu, 
 65                   const G4double nu,           <<  57                   const G4double nu, const G4double T)
 66                   const G4double T)            << 
 67 {                                                  58 {
 68   G4double ThermalWaveLenght = 16.15*fermi/std <<  59     const G4double ThermalWaveLenght = 16.15*fermi/sqrt(T);
 69   G4double lambda3 = ThermalWaveLenght*Thermal <<  60   
                                                   >>  61     const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght;
                                                   >>  62     
                                                   >>  63     const G4double degeneracy = 3.0;
                                                   >>  64     
                                                   >>  65     const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
                                                   >>  66   (1.0 - 1.0/pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
 70                                                    67     
 71   const G4double BindingE = G4NucleiProperties <<  68     const G4double BindingE = G4NucleiPropertiesTable::GetBindingEnergy(1,theA); //old value was 2.796*MeV
 72   //old value was 2.796*MeV                    <<  69     G4double exponent = (BindingE + theA*(mu+nu*theZARatio) - 
 73   G4double exponent = (BindingE + theA*(mu+nu* <<  70        Coulomb*theZARatio*theZARatio*pow(G4double(theA),5./3.))/T;
 74            G4StatMFParameters::GetCoulomb()*th <<  71 
 75            *G4Pow::GetInstance()->Z23(theA))/T <<  72     // To avoid numerical problems
 76                                                <<  73     if (exponent < -700.0) exponent = -700.0;
 77   // To avoid numerical problems               <<  74     else if (exponent > 700.0) exponent = 700.0;
 78   if (exponent < -300.0) exponent = -300.0;    << 
 79   else if (exponent > 300.0) exponent = 300.0; << 
 80                                                    75 
 81   _MeanMultiplicity = (degeneracy*FreeVol*theA <<  76     _MeanMultiplicity = (degeneracy*FreeVol*static_cast<G4double>(theA)*sqrt(static_cast<G4double>(theA))/lambda3)*
 82     G4Exp(exponent);                           <<  77   exp(exponent);
 83                                                    78        
 84   return _MeanMultiplicity;                    <<  79     return _MeanMultiplicity;
 85 }                                                  80 }
 86                                                    81 
                                                   >>  82 
 87 G4double G4StatMFMacroBiNucleon::CalcEnergy(co     83 G4double G4StatMFMacroBiNucleon::CalcEnergy(const G4double T)
 88 {                                                  84 {
 89   _Energy  = -G4NucleiProperties::GetBindingEn <<  85     const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())*
 90     G4StatMFParameters::GetCoulomb() * theZARa <<  86   (1.0 - 1.0/pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.));
 91     * theA*G4Pow::GetInstance()->Z23(theA) + 1 <<  87                   
                                                   >>  88     _Energy  = -G4NucleiPropertiesTable::GetBindingEnergy(1,theA) + 
                                                   >>  89   Coulomb * theZARatio * theZARatio * pow(G4double(theA),5./3.) +
                                                   >>  90   (3./2.) * T;
 92                                                    91               
 93   return _Energy;                              <<  92     return  _Energy;        
 94 }                                                  93 }
 95                                                    94 
                                                   >>  95 
                                                   >>  96 
 96 G4double G4StatMFMacroBiNucleon::CalcEntropy(c     97 G4double G4StatMFMacroBiNucleon::CalcEntropy(const G4double T, const G4double FreeVol)
 97 {                                                  98 {
 98   G4double Entropy = 0.0;                      <<  99     const G4double ThermalWaveLenght = 16.15*fermi/sqrt(T);
 99   if (_MeanMultiplicity > 0.0) {               << 100     const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght;
100     G4double ThermalWaveLenght = 16.15*fermi/s << 101 
101     G4double lambda3 = ThermalWaveLenght*Therm << 102     G4double Entropy = 0.0;
102     // Is this formula correct?                << 103     if (_MeanMultiplicity > 0.0)
103     Entropy = _MeanMultiplicity*(2.5+G4Log(3.0 << 104   // Is this formula correct?
104                /(lambda3*_MeanMultiplicity))); << 105   Entropy = _MeanMultiplicity*(5./2.+
105   }                                            << 106              log(3.0*static_cast<G4double>(theA)*
106   return Entropy;                              << 107            sqrt(static_cast<G4double>(theA))*FreeVol/
                                                   >> 108            (lambda3*_MeanMultiplicity)));
                                                   >> 109                 
                                                   >> 110                 
                                                   >> 111     return Entropy;
107 }                                                 112 }
108                                                   113