Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4StatMFMacroBiNucleon.cc 67983 2013-03-13 10:42:03Z gcosmo $ 27 // 28 // 28 // Hadronic Process: Nuclear De-excitations 29 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara 30 // by V. Lara 30 31 31 #include "G4StatMFMacroBiNucleon.hh" 32 #include "G4StatMFMacroBiNucleon.hh" 32 #include "G4StatMFParameters.hh" << 33 #include "G4PhysicalConstants.hh" 33 #include "G4PhysicalConstants.hh" 34 #include "G4SystemOfUnits.hh" 34 #include "G4SystemOfUnits.hh" 35 #include "G4Log.hh" << 36 #include "G4Exp.hh" << 37 #include "G4Pow.hh" << 38 35 39 // Operators 36 // Operators 40 37 41 static const G4double degeneracy = 3.0; << 42 << 43 G4StatMFMacroBiNucleon & G4StatMFMacroBiNucleo 38 G4StatMFMacroBiNucleon & G4StatMFMacroBiNucleon:: 44 operator=(const G4StatMFMacroBiNucleon & ) 39 operator=(const G4StatMFMacroBiNucleon & ) 45 { 40 { 46 throw G4HadronicException(__FILE__, __LINE << 41 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator= meant to not be accessable"); 47 return *this; 42 return *this; 48 } 43 } 49 44 >> 45 50 G4bool G4StatMFMacroBiNucleon::operator==(cons 46 G4bool G4StatMFMacroBiNucleon::operator==(const G4StatMFMacroBiNucleon & ) const 51 { 47 { 52 throw G4HadronicException(__FILE__, __LINE << 48 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator== meant to not be accessable"); 53 return false; 49 return false; 54 } 50 } 55 51 56 52 57 G4bool G4StatMFMacroBiNucleon::operator!=(cons 53 G4bool G4StatMFMacroBiNucleon::operator!=(const G4StatMFMacroBiNucleon & ) const 58 { 54 { 59 throw G4HadronicException(__FILE__, __LINE << 55 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroBiNucleon::operator!= meant to not be accessable"); 60 return true; 56 return true; 61 } 57 } 62 58 63 G4double G4StatMFMacroBiNucleon::CalcMeanMulti << 59 64 const G4double mu, << 60 G4double G4StatMFMacroBiNucleon::CalcMeanMultiplicity(const G4double FreeVol, const G4double mu, 65 const G4double nu, << 61 const G4double nu, const G4double T) 66 const G4double T) << 67 { 62 { 68 G4double ThermalWaveLenght = 16.15*fermi/std << 63 const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T); 69 G4double lambda3 = ThermalWaveLenght*Thermal << 64 >> 65 const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght; >> 66 >> 67 const G4double degeneracy = 3.0; >> 68 >> 69 const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* >> 70 (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); 70 71 71 const G4double BindingE = G4NucleiProperties << 72 const G4double BindingE = G4NucleiProperties::GetBindingEnergy(theA,1); //old value was 2.796*MeV 72 //old value was 2.796*MeV << 73 G4double exponent = (BindingE + theA*(mu+nu*theZARatio) - 73 G4double exponent = (BindingE + theA*(mu+nu* << 74 Coulomb*theZARatio*theZARatio*std::pow(G4double(theA),5./3.))/T; 74 G4StatMFParameters::GetCoulomb()*th << 75 75 *G4Pow::GetInstance()->Z23(theA))/T << 76 // To avoid numerical problems 76 << 77 if (exponent < -700.0) exponent = -700.0; 77 // To avoid numerical problems << 78 else if (exponent > 700.0) exponent = 700.0; 78 if (exponent < -300.0) exponent = -300.0; << 79 else if (exponent > 300.0) exponent = 300.0; << 80 79 81 _MeanMultiplicity = (degeneracy*FreeVol*theA << 80 _MeanMultiplicity = (degeneracy*FreeVol*static_cast<G4double>(theA)*std::sqrt(static_cast<G4double>(theA))/lambda3)* 82 G4Exp(exponent); << 81 std::exp(exponent); 83 82 84 return _MeanMultiplicity; << 83 return _MeanMultiplicity; 85 } 84 } 86 85 >> 86 87 G4double G4StatMFMacroBiNucleon::CalcEnergy(co 87 G4double G4StatMFMacroBiNucleon::CalcEnergy(const G4double T) 88 { 88 { 89 _Energy = -G4NucleiProperties::GetBindingEn << 89 const G4double Coulomb = (3./5.)*(elm_coupling/G4StatMFParameters::Getr0())* 90 G4StatMFParameters::GetCoulomb() * theZARa << 90 (1.0 - 1.0/std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)); 91 * theA*G4Pow::GetInstance()->Z23(theA) + 1 << 91 >> 92 _Energy = -G4NucleiProperties::GetBindingEnergy(theA,1) + >> 93 Coulomb * theZARatio * theZARatio * std::pow(G4double(theA),5./3.) + >> 94 (3./2.) * T; 92 95 93 return _Energy; << 96 return _Energy; 94 } 97 } 95 98 >> 99 >> 100 96 G4double G4StatMFMacroBiNucleon::CalcEntropy(c 101 G4double G4StatMFMacroBiNucleon::CalcEntropy(const G4double T, const G4double FreeVol) 97 { 102 { 98 G4double Entropy = 0.0; << 103 const G4double ThermalWaveLenght = 16.15*fermi/std::sqrt(T); 99 if (_MeanMultiplicity > 0.0) { << 104 const G4double lambda3 = ThermalWaveLenght*ThermalWaveLenght*ThermalWaveLenght; 100 G4double ThermalWaveLenght = 16.15*fermi/s << 105 101 G4double lambda3 = ThermalWaveLenght*Therm << 106 G4double Entropy = 0.0; 102 // Is this formula correct? << 107 if (_MeanMultiplicity > 0.0) 103 Entropy = _MeanMultiplicity*(2.5+G4Log(3.0 << 108 // Is this formula correct? 104 /(lambda3*_MeanMultiplicity))); << 109 Entropy = _MeanMultiplicity*(5./2.+ 105 } << 110 std::log(3.0*static_cast<G4double>(theA)* 106 return Entropy; << 111 std::sqrt(static_cast<G4double>(theA))*FreeVol/ >> 112 (lambda3*_MeanMultiplicity))); >> 113 >> 114 >> 115 return Entropy; 107 } 116 } 108 117