Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMF.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMF.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMF.cc (Version 10.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4StatMF.cc 67983 2013-03-13 10:42:03Z gcosmo $
 27 //                                                 28 //
 28 // Hadronic Process: Nuclear De-excitations        29 // Hadronic Process: Nuclear De-excitations
 29 // by V. Lara                                      30 // by V. Lara
 30                                                    31 
 31 #include "G4StatMF.hh"                             32 #include "G4StatMF.hh"
 32 #include "G4PhysicalConstants.hh"                  33 #include "G4PhysicalConstants.hh"
 33 #include "G4SystemOfUnits.hh"                      34 #include "G4SystemOfUnits.hh"
 34 #include "G4Pow.hh"                                35 #include "G4Pow.hh"
 35 #include "G4PhysicsModelCatalog.hh"            << 
 36                                                    36 
 37 G4StatMF::G4StatMF()                           << 
 38 {                                              << 
 39   _secID = G4PhysicsModelCatalog::GetModelID(" << 
 40 }                                              << 
 41                                                    37 
 42 G4StatMF::~G4StatMF() {}                       <<  38 // Default constructor
                                                   >>  39 G4StatMF::G4StatMF() : _theEnsemble(0) {}
                                                   >>  40 
                                                   >>  41 
                                                   >>  42 // Destructor
                                                   >>  43 G4StatMF::~G4StatMF() {} //{if (_theEnsemble != 0) delete _theEnsemble;}
 43                                                    44 
 44 G4FragmentVector* G4StatMF::BreakItUp(const G4 <<  45 
                                                   >>  46 G4FragmentVector * G4StatMF::BreakItUp(const G4Fragment &theFragment)
 45 {                                                  47 {
                                                   >>  48   //  G4FragmentVector * theResult = new G4FragmentVector;
                                                   >>  49 
 46   if (theFragment.GetExcitationEnergy() <= 0.0     50   if (theFragment.GetExcitationEnergy() <= 0.0) {
 47     return nullptr;                            <<  51     //G4FragmentVector * theResult = new G4FragmentVector;
                                                   >>  52     //theResult->push_back(new G4Fragment(theFragment));
                                                   >>  53     return 0;
 48   }                                                54   }
 49                                                    55 
                                                   >>  56 
 50   // Maximun average multiplicity: M_0 = 2.6 f     57   // Maximun average multiplicity: M_0 = 2.6 for A ~ 200 
 51   // and M_0 = 3.3 for A <= 110                    58   // and M_0 = 3.3 for A <= 110
 52   G4double MaxAverageMultiplicity =                59   G4double MaxAverageMultiplicity = 
 53     G4StatMFParameters::GetMaxAverageMultiplic     60     G4StatMFParameters::GetMaxAverageMultiplicity(theFragment.GetA_asInt());
 54                                                    61 
 55                                                    62   
 56     // We'll use two kinds of ensembles            63     // We'll use two kinds of ensembles
 57   G4StatMFMicroCanonical * theMicrocanonicalEn     64   G4StatMFMicroCanonical * theMicrocanonicalEnsemble = 0;
 58   G4StatMFMacroCanonical * theMacrocanonicalEn     65   G4StatMFMacroCanonical * theMacrocanonicalEnsemble = 0;
                                                   >>  66 
 59                                                    67   
 60   //------------------------------------------ <<  68   //-------------------------------------------------------
 61   // Direct simulation part (Microcanonical en <<  69   // Direct simulation part (Microcanonical ensemble)
 62   //------------------------------------------ <<  70   //-------------------------------------------------------
 63                                                    71   
 64   // Microcanonical ensemble initialization    <<  72   // Microcanonical ensemble initialization 
 65   theMicrocanonicalEnsemble = new G4StatMFMicr     73   theMicrocanonicalEnsemble = new G4StatMFMicroCanonical(theFragment);
 66                                                    74 
 67   G4int Iterations = 0;                            75   G4int Iterations = 0;
 68   G4int IterationsLimit = 100000;                  76   G4int IterationsLimit = 100000;
 69   G4double Temperature = 0.0;                      77   G4double Temperature = 0.0;
 70                                                    78   
 71   G4bool FirstTime = true;                         79   G4bool FirstTime = true;
 72   G4StatMFChannel * theChannel = 0;                80   G4StatMFChannel * theChannel = 0;
 73                                                    81  
 74   G4bool ChannelOk;                                82   G4bool ChannelOk;
 75   do {  // Try to de-excite as much as Iterati     83   do {  // Try to de-excite as much as IterationLimit permits
 76     do {                                           84     do {
 77                                                    85       
 78       G4double theMeanMult = theMicrocanonical     86       G4double theMeanMult = theMicrocanonicalEnsemble->GetMeanMultiplicity();
 79       if (theMeanMult <= MaxAverageMultiplicit     87       if (theMeanMult <= MaxAverageMultiplicity) {
 80   // G4cout << "MICROCANONICAL" << G4endl;         88   // G4cout << "MICROCANONICAL" << G4endl;
 81   // Choose fragments atomic numbers and charg     89   // Choose fragments atomic numbers and charges from direct simulation
 82   theChannel = theMicrocanonicalEnsemble->Choo     90   theChannel = theMicrocanonicalEnsemble->ChooseAandZ(theFragment);
 83   _theEnsemble = theMicrocanonicalEnsemble;        91   _theEnsemble = theMicrocanonicalEnsemble;
 84       } else {                                     92       } else {
 85   //------------------------------------------     93   //-----------------------------------------------------
 86   // Non direct simulation part (Macrocanonica     94   // Non direct simulation part (Macrocanonical Ensemble)
 87   //------------------------------------------     95   //-----------------------------------------------------
 88   if (FirstTime) {                                 96   if (FirstTime) {
 89     // Macrocanonical ensemble initialization      97     // Macrocanonical ensemble initialization 
 90     theMacrocanonicalEnsemble = new G4StatMFMa     98     theMacrocanonicalEnsemble = new G4StatMFMacroCanonical(theFragment);
 91     _theEnsemble = theMacrocanonicalEnsemble;      99     _theEnsemble = theMacrocanonicalEnsemble;
 92     FirstTime = false;                            100     FirstTime = false;
 93   }                                               101   }
 94   // G4cout << "MACROCANONICAL" << G4endl;        102   // G4cout << "MACROCANONICAL" << G4endl;
 95   // Select calculated fragment total multipli    103   // Select calculated fragment total multiplicity, 
 96   // fragment atomic numbers and fragment char    104   // fragment atomic numbers and fragment charges.
 97   theChannel = theMacrocanonicalEnsemble->Choo    105   theChannel = theMacrocanonicalEnsemble->ChooseAandZ(theFragment);
 98       }                                           106       }
 99                                                   107       
100       ChannelOk = theChannel->CheckFragments()    108       ChannelOk = theChannel->CheckFragments();
101       if (!ChannelOk) delete theChannel;          109       if (!ChannelOk) delete theChannel; 
102                                                   110       
103       // Loop checking, 05-Aug-2015, Vladimir  << 
104     } while (!ChannelOk);                         111     } while (!ChannelOk);
105                                                   112     
106                                                   113     
107     if (theChannel->GetMultiplicity() <= 1) {     114     if (theChannel->GetMultiplicity() <= 1) {
108       G4FragmentVector * theResult = new G4Fra    115       G4FragmentVector * theResult = new G4FragmentVector;
109       theResult->push_back(new G4Fragment(theF    116       theResult->push_back(new G4Fragment(theFragment));
110       delete theMicrocanonicalEnsemble;           117       delete theMicrocanonicalEnsemble;
111       if (theMacrocanonicalEnsemble != 0) dele    118       if (theMacrocanonicalEnsemble != 0) delete theMacrocanonicalEnsemble;
112       delete theChannel;                          119       delete theChannel;
113       return theResult;                           120       return theResult;
114     }                                             121     }
115                                                   122     
116     //--------------------------------------      123     //--------------------------------------
117     // Second part of simulation procedure.       124     // Second part of simulation procedure.
118     //--------------------------------------      125     //--------------------------------------
119                                                   126     
120     // Find temperature of breaking channel.      127     // Find temperature of breaking channel.
121     Temperature = _theEnsemble->GetMeanTempera    128     Temperature = _theEnsemble->GetMeanTemperature(); // Initial guess for Temperature 
122                                                   129  
123     if (FindTemperatureOfBreakingChannel(theFr    130     if (FindTemperatureOfBreakingChannel(theFragment,theChannel,Temperature)) break;
124                                                   131  
125     // Do not forget to delete this unusable c    132     // Do not forget to delete this unusable channel, for which we failed to find the temperature,
126     // otherwise for very proton-reach nuclei     133     // otherwise for very proton-reach nuclei it would lead to memory leak due to large 
127     // number of iterations. N.B. "theChannel"    134     // number of iterations. N.B. "theChannel" is created in G4StatMFMacroCanonical::ChooseZ()
128                                                   135 
129     // G4cout << " Iteration # " << Iterations    136     // G4cout << " Iteration # " << Iterations << " Mean Temperature = " << Temperature << G4endl;    
130                                                   137 
131     delete theChannel;                            138     delete theChannel;    
132                                                   139 
133     // Loop checking, 05-Aug-2015, Vladimir Iv << 
134   } while (Iterations++ < IterationsLimit );      140   } while (Iterations++ < IterationsLimit );
                                                   >> 141   
                                                   >> 142  
135                                                   143 
136   // If Iterations >= IterationsLimit means th    144   // If Iterations >= IterationsLimit means that we couldn't solve for temperature
137   if (Iterations >= IterationsLimit)              145   if (Iterations >= IterationsLimit) 
138     throw G4HadronicException(__FILE__, __LINE    146     throw G4HadronicException(__FILE__, __LINE__, "G4StatMF::BreakItUp: Was not possible to solve for temperature of breaking channel");
139                                                << 147   
                                                   >> 148   
140   G4FragmentVector * theResult = theChannel->     149   G4FragmentVector * theResult = theChannel->
141     GetFragments(theFragment.GetA_asInt(),theF    150     GetFragments(theFragment.GetA_asInt(),theFragment.GetZ_asInt(),Temperature);
142                                                << 151   
                                                   >> 152   
                                                   >> 153   
143   // ~~~~~~ Energy conservation Patch !!!!!!!!    154   // ~~~~~~ Energy conservation Patch !!!!!!!!!!!!!!!!!!!!!!
144   // Original nucleus 4-momentum in CM system     155   // Original nucleus 4-momentum in CM system
145   G4LorentzVector InitialMomentum(theFragment.    156   G4LorentzVector InitialMomentum(theFragment.GetMomentum());
146   InitialMomentum.boost(-InitialMomentum.boost    157   InitialMomentum.boost(-InitialMomentum.boostVector());
147   G4double ScaleFactor = 0.0;                     158   G4double ScaleFactor = 0.0;
148   G4double SavedScaleFactor = 0.0;                159   G4double SavedScaleFactor = 0.0;
149   do {                                            160   do {
150     G4double FragmentsEnergy = 0.0;               161     G4double FragmentsEnergy = 0.0;
151     for (auto const & ptr : *theResult) {      << 162     G4FragmentVector::iterator j;
152       FragmentsEnergy += ptr->GetMomentum().e( << 163     for (j = theResult->begin(); j != theResult->end(); j++) 
153     }                                          << 164       FragmentsEnergy += (*j)->GetMomentum().e();
154     if (0.0 == FragmentsEnergy) { break; }     << 
155     SavedScaleFactor = ScaleFactor;               165     SavedScaleFactor = ScaleFactor;
156     ScaleFactor = InitialMomentum.e()/Fragment    166     ScaleFactor = InitialMomentum.e()/FragmentsEnergy;
157     G4ThreeVector ScaledMomentum(0.0,0.0,0.0);    167     G4ThreeVector ScaledMomentum(0.0,0.0,0.0);
158     for (auto const & ptr : *theResult) {      << 168     for (j = theResult->begin(); j != theResult->end(); j++) {
159       ScaledMomentum = ScaleFactor * ptr->GetM << 169       ScaledMomentum = ScaleFactor * (*j)->GetMomentum().vect();
160       G4double Mass = ptr->GetMomentum().mag() << 170       G4double Mass = (*j)->GetMomentum().m();
161       G4LorentzVector NewMomentum;                171       G4LorentzVector NewMomentum;
162       NewMomentum.setVect(ScaledMomentum);        172       NewMomentum.setVect(ScaledMomentum);
163       NewMomentum.setE(std::sqrt(ScaledMomentu    173       NewMomentum.setE(std::sqrt(ScaledMomentum.mag2()+Mass*Mass));
164       ptr->SetMomentum(NewMomentum);           << 174       (*j)->SetMomentum(NewMomentum);   
165     }                                             175     }
166     // Loop checking, 05-Aug-2015, Vladimir Iv << 
167   } while (ScaleFactor > 1.0+1.e-5 && std::abs    176   } while (ScaleFactor > 1.0+1.e-5 && std::abs(ScaleFactor-SavedScaleFactor)/ScaleFactor > 1.e-10);
168   // ~~~~~~ End of patch !!!!!!!!!!!!!!!!!!!!!    177   // ~~~~~~ End of patch !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
169                                                   178   
170   // Perform Lorentz boost                        179   // Perform Lorentz boost
171   G4FragmentVector::iterator i;                   180   G4FragmentVector::iterator i;
172   for (i = theResult->begin(); i != theResult-    181   for (i = theResult->begin(); i != theResult->end(); i++) {
173     G4LorentzVector FourMom = (*i)->GetMomentu    182     G4LorentzVector FourMom = (*i)->GetMomentum();
174     FourMom.boost(theFragment.GetMomentum().bo    183     FourMom.boost(theFragment.GetMomentum().boostVector());
175     (*i)->SetMomentum(FourMom);                   184     (*i)->SetMomentum(FourMom);
176     (*i)->SetCreatorModelID(_secID);           << 185 #ifdef PRECOMPOUND_TEST
                                                   >> 186     (*i)->SetCreatorModel(G4String("G4StatMF"));
                                                   >> 187 #endif
177   }                                               188   }
178                                                   189   
179   // garbage collection                           190   // garbage collection
180   delete theMicrocanonicalEnsemble;               191   delete theMicrocanonicalEnsemble;
181   if (theMacrocanonicalEnsemble != 0) delete t    192   if (theMacrocanonicalEnsemble != 0) delete theMacrocanonicalEnsemble;
182   delete theChannel;                              193   delete theChannel;
183                                                   194   
184   return theResult;                               195   return theResult;
185 }                                                 196 }
186                                                   197 
187                                                   198 
188 G4bool G4StatMF::FindTemperatureOfBreakingChan    199 G4bool G4StatMF::FindTemperatureOfBreakingChannel(const G4Fragment & theFragment,
189               const G4StatMFChannel * aChannel    200               const G4StatMFChannel * aChannel,
190               G4double & Temperature)             201               G4double & Temperature)
191   // This finds temperature of breaking channe    202   // This finds temperature of breaking channel.
192 {                                                 203 {
193   G4int A = theFragment.GetA_asInt();             204   G4int A = theFragment.GetA_asInt();
194   G4int Z = theFragment.GetZ_asInt();             205   G4int Z = theFragment.GetZ_asInt();
195   G4double U = theFragment.GetExcitationEnergy    206   G4double U = theFragment.GetExcitationEnergy();
196                                                   207   
197   G4double T = std::max(Temperature,0.0012*MeV << 208   G4double T = std::max(Temperature,0.0012*MeV);
                                                   >> 209   
198   G4double Ta = T;                                210   G4double Ta = T;
                                                   >> 211   G4double Tb = T;
                                                   >> 212   
                                                   >> 213   
199   G4double TotalEnergy = CalcEnergy(A,Z,aChann    214   G4double TotalEnergy = CalcEnergy(A,Z,aChannel,T);
200                                                   215   
201   G4double Da = (U - TotalEnergy)/U;              216   G4double Da = (U - TotalEnergy)/U;
202   G4double Db = 0.0;                              217   G4double Db = 0.0;
203                                                   218   
204   // bracketing the solution                      219   // bracketing the solution
205   if (Da == 0.0) {                                220   if (Da == 0.0) {
206     Temperature = T;                              221     Temperature = T;
207     return true;                                  222     return true;
208   } else if (Da < 0.0) {                          223   } else if (Da < 0.0) {
209     do {                                          224     do {
210       T *= 0.5;                                << 225       Tb -= 0.5 * std::fabs(Tb);
211       if (T < 0.001*MeV) return false;         << 226       T = Tb;
                                                   >> 227       if (Tb < 0.001*MeV) return false;
212                                                   228       
213       TotalEnergy = CalcEnergy(A,Z,aChannel,T)    229       TotalEnergy = CalcEnergy(A,Z,aChannel,T);
214                                                   230       
215       Db = (U - TotalEnergy)/U;                   231       Db = (U - TotalEnergy)/U;
216       // Loop checking, 05-Aug-2015, Vladimir  << 
217     } while (Db < 0.0);                           232     } while (Db < 0.0);
218                                                   233     
219   } else {                                        234   } else {
220     do {                                          235     do {
221       T *= 1.5;                                << 236       Tb += 0.5 * std::fabs(Tb);
                                                   >> 237       T = Tb;
222                                                   238       
223       TotalEnergy = CalcEnergy(A,Z,aChannel,T)    239       TotalEnergy = CalcEnergy(A,Z,aChannel,T);
224                                                   240       
225       Db = (U - TotalEnergy)/U;                   241       Db = (U - TotalEnergy)/U;
226       // Loop checking, 05-Aug-2015, Vladimir  << 
227     } while (Db > 0.0);                           242     } while (Db > 0.0); 
228   }                                               243   }
229                                                   244   
230   G4double eps = 1.0e-14 * std::abs(T-Ta);     << 245   G4double eps = 1.0e-14 * std::abs(Tb-Ta);
231   //G4double eps = 1.0e-3 ;                       246   //G4double eps = 1.0e-3 ;
232                                                   247   
233   // Start the bisection method                   248   // Start the bisection method
234   for (G4int j = 0; j < 1000; j++) {              249   for (G4int j = 0; j < 1000; j++) {
235     G4double Tc =  (Ta+T)*0.5;                 << 250     G4double Tc =  (Ta+Tb)/2.0;
236     if (std::abs(Ta-Tc) <= eps) {                 251     if (std::abs(Ta-Tc) <= eps) {
237       Temperature = Tc;                           252       Temperature = Tc;
238       return true;                                253       return true;
239     }                                             254     }
240                                                   255     
241     T = Tc;                                    << 256     T = Tc;
                                                   >> 257     
242     TotalEnergy = CalcEnergy(A,Z,aChannel,T);     258     TotalEnergy = CalcEnergy(A,Z,aChannel,T);
                                                   >> 259     
243     G4double Dc = (U - TotalEnergy)/U;            260     G4double Dc = (U - TotalEnergy)/U; 
244                                                   261     
245     if (Dc == 0.0) {                              262     if (Dc == 0.0) {
246       Temperature  = Tc;                          263       Temperature  = Tc;
247       return true;                                264       return true;
248     }                                             265     }
                                                   >> 266     
249     if (Da*Dc < 0.0) {                            267     if (Da*Dc < 0.0) {
250       T  = Tc;                                 << 268       Tb = Tc;
251       Db = Dc;                                    269       Db = Dc;
252     } else {                                      270     } else {
253       Ta = Tc;                                    271       Ta = Tc;
254       Da = Dc;                                    272       Da = Dc;
255     }                                             273     }
256   }                                               274   }
257                                                   275   
258   Temperature  = (Ta+T)*0.5;                   << 276   Temperature  = (Ta+Tb)/2.0;
259   return false;                                   277   return false;
260 }                                                 278 }
261                                                   279 
262 G4double G4StatMF::CalcEnergy(G4int A, G4int Z    280 G4double G4StatMF::CalcEnergy(G4int A, G4int Z, const G4StatMFChannel * aChannel,
263             G4double T)                           281             G4double T)
264 {                                                 282 {
265   G4double MassExcess0 = G4NucleiProperties::G << 283     G4double MassExcess0 = G4NucleiProperties::GetMassExcess(A,Z);
266   G4double ChannelEnergy = aChannel->GetFragme << 284   
267   return -MassExcess0 + G4StatMFParameters::Ge << 285     G4double Coulomb = (3./5.)*(elm_coupling*Z*Z)
                                                   >> 286       *std::pow(1.0+G4StatMFParameters::GetKappaCoulomb(),1./3.)/
                                                   >> 287       (G4StatMFParameters::Getr0()*G4Pow::GetInstance()->Z13(A));
                                                   >> 288 
                                                   >> 289     G4double ChannelEnergy = aChannel->GetFragmentsEnergy(T);
                                                   >> 290   
                                                   >> 291     return -MassExcess0 + Coulomb + ChannelEnergy;
                                                   >> 292 
268 }                                                 293 }
269                                                   294 
270                                                   295 
271                                                   296 
272                                                   297