Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/management/src/G4VEmissionProbability.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/management/src/G4VEmissionProbability.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/management/src/G4VEmissionProbability.cc (Version 10.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Hadronic Process: Nuclear De-excitations        26 // Hadronic Process: Nuclear De-excitations
 27 // by V. Lara (Oct 1998)                           27 // by V. Lara (Oct 1998)
 28 //                                                 28 //
 29 // Modifications:                                  29 // Modifications:
 30 // 28.10.2010 V.Ivanchenko defined members in      30 // 28.10.2010 V.Ivanchenko defined members in constructor and cleaned up
 31                                                    31 
 32 #include "G4VEmissionProbability.hh"               32 #include "G4VEmissionProbability.hh"
 33 #include "G4NuclearLevelData.hh"                   33 #include "G4NuclearLevelData.hh"
 34 #include "G4LevelManager.hh"                       34 #include "G4LevelManager.hh"
 35 #include "G4DeexPrecoParameters.hh"                35 #include "G4DeexPrecoParameters.hh"
 36 #include "Randomize.hh"                            36 #include "Randomize.hh"
 37 #include "G4Pow.hh"                                37 #include "G4Pow.hh"
 38 #include "G4Log.hh"                            << 
 39 #include "G4Exp.hh"                            << 
 40                                                    38 
 41 G4VEmissionProbability::G4VEmissionProbability     39 G4VEmissionProbability::G4VEmissionProbability(G4int Z, G4int A)
 42   : pVerbose(1), theZ(Z), theA(A), elimit(CLHE <<  40   : OPTxs(3),pVerbose(1),theZ(Z),theA(A),resZ(0),resA(0),
                                                   >>  41     pMass(0.0),pEvapMass(0.0),pResMass(0.0),fExc(0.0),fExcRes(0.0),
                                                   >>  42     elimit(CLHEP::MeV),accuracy(0.02),fFD(false)
 43 {                                                  43 {
 44   pNuclearLevelData = G4NuclearLevelData::GetI     44   pNuclearLevelData = G4NuclearLevelData::GetInstance(); 
 45   pG4pow = G4Pow::GetInstance();                   45   pG4pow = G4Pow::GetInstance();
 46   if(A > 0) { pEvapMass = G4NucleiProperties::     46   if(A > 0) { pEvapMass = G4NucleiProperties::GetNuclearMass(theA, theZ); }
 47   G4DeexPrecoParameters* param = pNuclearLevel <<  47   // G4cout << "G4VEvaporationProbability: Z= " << theZ << " A= " << theA 
 48   OPTxs = param->GetDeexModelType();           <<  48   // << " M(GeV)= " << pEvapMass/1000. << G4endl;
                                                   >>  49   length = nbin = 0;
                                                   >>  50   emin = emax = eCoulomb = pProbability = probmax = 0.0;
 49 }                                                  51 }
 50                                                    52 
                                                   >>  53 G4VEmissionProbability::~G4VEmissionProbability() 
                                                   >>  54 {}
                                                   >>  55 
 51 void G4VEmissionProbability::Initialise()          56 void G4VEmissionProbability::Initialise()
 52 {                                                  57 {
 53   G4DeexPrecoParameters* param = pNuclearLevel     58   G4DeexPrecoParameters* param = pNuclearLevelData->GetParameters();
                                                   >>  59   OPTxs = param->GetDeexModelType();
 54   pVerbose = param->GetVerbose();                  60   pVerbose = param->GetVerbose();
 55   fFD = param->GetDiscreteExcitationFlag();        61   fFD = param->GetDiscreteExcitationFlag();
 56   pTolerance = param->GetMinExcitation();      << 
 57   pWidth = param->GetNuclearLevelWidth();      << 
 58 }                                                  62 }
 59                                                    63 
 60 void G4VEmissionProbability::ResetIntegrator(s <<  64 void G4VEmissionProbability::ResetIntegrator(size_t nbins, G4double de, G4double eps)
 61 {                                                  65 {
                                                   >>  66   if(nbins > 0) { length = nbins; }
 62   if(de > 0.0)  { elimit = de; }                   67   if(de > 0.0)  { elimit = de; }
 63   if(eps > 0.0) { accuracy = eps; }                68   if(eps > 0.0) { accuracy = eps; }
 64 }                                                  69 }
 65                                                    70 
 66 G4double G4VEmissionProbability::EmissionProba     71 G4double G4VEmissionProbability::EmissionProbability(const G4Fragment&, G4double)
 67 {                                                  72 {
 68   return 0.0;                                      73   return 0.0;
 69 }                                                  74 }
 70                                                    75 
 71 G4double G4VEmissionProbability::ComputeProbab     76 G4double G4VEmissionProbability::ComputeProbability(G4double, G4double)
 72 {                                                  77 {
 73   return 0.0;                                      78   return 0.0;
 74 }                                                  79 }
 75                                                    80 
 76 G4double G4VEmissionProbability::IntegrateProb     81 G4double G4VEmissionProbability::IntegrateProbability(G4double elow, 
 77                                                    82                                                       G4double ehigh, 
 78                                                    83                                                       G4double cb)
 79 {                                                  84 {
 80   pProbability = 0.0;                              85   pProbability = 0.0;
 81   if(elow >= ehigh) { return pProbability; }       86   if(elow >= ehigh) { return pProbability; }
 82                                                    87 
 83   emin = elow;                                     88   emin = elow;
 84   emax = ehigh;                                    89   emax = ehigh;
 85   eCoulomb = cb;                                   90   eCoulomb = cb;
 86                                                    91 
 87   const G4double edeltamin = 0.1*CLHEP::MeV;   <<  92   G4double edelta = elimit;
                                                   >>  93   nbin = (size_t)((emax - emin)/edelta) + 1;
                                                   >>  94   const G4double edeltamin = 0.2*CLHEP::MeV;
 88   const G4double edeltamax = 2*CLHEP::MeV;         95   const G4double edeltamax = 2*CLHEP::MeV;
 89   G4double edelta = std::min(std::min(elimit,  <<  96   if(nbin < 4) { 
 90   G4double xbin = (emax - emin)/edelta + 1.0;  <<  97     nbin = 4;
 91   G4int ibin = std::max((G4int)xbin, 4);       <<  98     edelta = (emax - emin)/(G4double)nbin;
 92                                                <<  99   } else if(nbin > length) {
 93   // providing smart binning                   << 100     nbin = length;
 94   G4int nbin = ibin*5;                         << 101   }
 95   edelta = (emax - emin)/ibin;                 << 
 96                                                   102 
 97   G4double x(emin), y(0.0);                    << 103   G4double x(emin), del, y; 
 98   G4double edelmicro = edelta*0.02;            << 104   G4double edelmicro= edelta*0.02;
 99   probmax = ComputeProbability(x + edelmicro,     105   probmax = ComputeProbability(x + edelmicro, eCoulomb);
100   G4double problast = probmax;                    106   G4double problast = probmax;
101   if(pVerbose > 1) {                           << 107   if(pVerbose > 2) {
102     G4cout << "### G4VEmissionProbability::Int << 108     G4cout << "### G4VEmissionProbability::IntegrateProbability: " 
103      << "probmax=" << probmax << " Emin=" << e << 109      << " Emax= " << emax << " QB= " << cb << " nbin= " << nbin 
104      << " Emax=" << emax << " QB=" << cb << "  << 
105      << G4endl;                                   110      << G4endl;
                                                   >> 111     G4cout << "    0.  E= " << emin << "  prob= " << probmax << G4endl;
106   }                                               112   }
107   fE1 = fE2 = fP2 = 0.0;                       << 113   for(size_t i=1; i<=nbin; ++i) {
108   G4double emax0 = emax - edelmicro;           << 
109   G4bool endpoint = false;                     << 
110   for(G4int i=0; i<nbin; ++i) {                << 
111     x += edelta;                                  114     x += edelta;
112     if(x >= emax0) {                           << 115     if(x > emax) { 
113       x = emax0;                               << 116       edelta += (emax - x);
114       endpoint = true;                         << 117       x = emax; 
115     }                                          << 118     }
116     y = ComputeProbability(x, eCoulomb);       << 119     G4bool endpoint = (std::abs(x - emax) < edelmicro) ? true : false;
                                                   >> 120     G4double xx = endpoint ? x - edelmicro : x;
                                                   >> 121     y = ComputeProbability(xx, eCoulomb);
117     if(pVerbose > 2) {                            122     if(pVerbose > 2) { 
118       G4cout << "    " << i << ".  E= " << x < << 123       G4cout << "    " << i << ".  E= " << x << "  prob= " << y 
119        << " Edel= " << edelta << G4endl;          124        << " Edel= " << edelta << G4endl;
120     }                                             125     } 
121     if(y >= probmax) {                         << 126     probmax = std::max(probmax, y);
122       probmax = y;                             << 127     del = (y + problast)*edelta*0.5;
123     } else if(0.0 == fE1 && 2*y < probmax) {   << 
124       fE1 = x;                                 << 
125     }                                          << 
126                                                << 
127     G4double del = (y + problast)*edelta*0.5;  << 
128     pProbability += del;                          128     pProbability += del;
129     // end of the loop                            129     // end of the loop
130     if(del < accuracy*pProbability || endpoint    130     if(del < accuracy*pProbability || endpoint) { break; }
131     problast = y;                                 131     problast = y;
132                                                   132 
133     // smart step definition                      133     // smart step definition
134     if(del != pProbability && del > 0.8*pProba    134     if(del != pProbability && del > 0.8*pProbability && 
135        0.7*edelta > edeltamin) {                  135        0.7*edelta > edeltamin) { 
136       edelta *= 0.7;                              136       edelta *= 0.7;
137     } else if(del < 0.1*pProbability && 1.5*ed    137     } else if(del < 0.1*pProbability && 1.5*edelta < edeltamax) { 
138       edelta *= 1.5;                              138       edelta *= 1.5;
139     }                                             139     }
140   }                                               140   }
141   if(fE1 > emin && fE1 < emax) {               << 
142     fE2 = std::max(0.5*(fE1 + emax), emax - ed << 
143     fP2 = 2*ComputeProbability(fE2, eCoulomb); << 
144   }                                            << 
145                                                   141 
146   if(pVerbose > 1) {                              142   if(pVerbose > 1) { 
147     G4cout << " Probability= " << pProbability    143     G4cout << " Probability= " << pProbability << " probmax= " 
148            << probmax << " emin=" << emin << " << 144            << probmax << G4endl; 
149      << " E1=" << fE1 << " E2=" << fE2 << G4en << 
150   }                                               145   }
151   return pProbability;                            146   return pProbability;
152 }                                                 147 }
153                                                   148 
154 G4double G4VEmissionProbability::SampleEnergy(    149 G4double G4VEmissionProbability::SampleEnergy()
155 {                                                 150 {
156   static const G4double fact = 1.05;              151   static const G4double fact = 1.05;
157   static const G4double alim = 0.05;           << 
158   static const G4double blim = 20.;            << 
159   probmax *= fact;                                152   probmax *= fact;
160                                                   153 
161   // two regions with flat and exponential maj << 
162   G4double del = emax - emin;                  << 
163   G4double p1 = 1.0;                           << 
164   G4double p2 = 0.0;                           << 
165   G4double a0 = 0.0;                           << 
166   G4double a1 = 1.0;                           << 
167   G4double x;                                  << 
168   if(fE1 > 0.0 && fP2 > 0.0 && fP2 < 0.5*probm << 
169     a0 = G4Log(probmax/fP2)/(fE2 - fE1);       << 
170     del= fE1 - emin;                           << 
171     p1 = del;                                  << 
172     x = a0*(emax - fE1);                       << 
173     if(x < blim) {                             << 
174       a1 = (x > alim) ? 1.0 - G4Exp(-x) : x*(1 << 
175     }                                          << 
176     p2 = a1/a0;                                << 
177     p1 /= (p1 + p2);                           << 
178     p2 = 1.0 - p1;                             << 
179   }                                            << 
180                                                << 
181   if(pVerbose > 1) {                              154   if(pVerbose > 1) {
182     G4cout << "### G4VEmissionProbability::Sam    155     G4cout << "### G4VEmissionProbability::SampleEnergy: " 
183      << " Emin= " << emin << " Emax= " << emax    156      << " Emin= " << emin << " Emax= " << emax 
184            << "/n    E1=" << fE1 << " p1=" <<  << 157      << " probmax= " << probmax << G4endl;
185      << " probmax=" << probmax << " P2=" << fP << 
186   }                                               158   }
187                                                   159 
188   CLHEP::HepRandomEngine* rndm = G4Random::get    160   CLHEP::HepRandomEngine* rndm = G4Random::getTheEngine();
189   const G4int nmax = 1000;                     << 161   const G4int nmax = 100;
190   G4double ekin, gg, gmax;                     << 162   G4double del = emax - emin;
                                                   >> 163   G4double ekin, g;
191   G4int n = 0;                                    164   G4int n = 0;
192   do {                                            165   do {
                                                   >> 166     ekin = del*rndm->flat() + emin; 
193     ++n;                                          167     ++n;
194     G4double q = rndm->flat();                 << 168     g = ComputeProbability(ekin, eCoulomb);
195     if (p2 == 0.0) {                           << 
196       gmax = probmax;                          << 
197       ekin = del*q + emin;                     << 
198     } else if (q <= p1) {                      << 
199       gmax = probmax;                          << 
200       ekin = del*q/p1 + emin;                  << 
201     } else {                                   << 
202       ekin = fE1 - G4Log(1.0 - (q - p1)*a1/p2) << 
203       x = a0*(ekin - fE1);                     << 
204       gmax = fP2;                              << 
205       if(x < blim) {                           << 
206   gmax = probmax*((x > alim) ? G4Exp(-x) : 1.0 << 
207       }                                        << 
208     }                                          << 
209     gg = ComputeProbability(ekin, eCoulomb);   << 
210     if(pVerbose > 2) {                            169     if(pVerbose > 2) {
211       G4cout << "    " << n                       170       G4cout << "    " << n
212        << ". prob= " << gg << " probmax= " <<  << 171        << ". prob= " << g << " probmax= " << probmax
213        << " Ekin= " << ekin << G4endl;            172        << " Ekin= " << ekin << G4endl;
214     }                                             173     }
215     if((gg > gmax || n > nmax) && pVerbose > 1 << 174     if((g > probmax || n > nmax) && pVerbose > 1) {
216       G4cout << "### G4VEmissionProbability::S    175       G4cout << "### G4VEmissionProbability::SampleEnergy for Z= " << theZ 
217              << " A= " << theA << " Eex(MeV)=" << 176              << " A= " << theA 
218              << "\n    Warning n= " << n          177              << "\n    Warning n= " << n
219        << " prob/gmax=" << gg/gmax             << 178        << " prob/probmax= " << g/probmax 
220        << " prob=" << gg << " gmax=" << gmax < << 179        << " prob= " << g << " probmax= " << probmax 
221        << "\n    Ekin= " << ekin << " Emin= "     180        << "\n    Ekin= " << ekin << " Emin= " << emin
222        << " Emax= " << emax << G4endl;            181        << " Emax= " << emax << G4endl;
223     }                                             182     }
224   } while(gmax*rndm->flat() > gg && n < nmax); << 183   } while(probmax*rndm->flat() > g && n < nmax);
225   G4double enew = FindRecoilExcitation(ekin);  << 184   return (fFD) ? FindRecoilExcitation(ekin) : ekin;
226   if(pVerbose > 1) {                           << 
227     G4cout << "### SampleEnergy: Efinal= "     << 
228      << enew << " E=" << ekin << "  Eexc=" <<  << 
229   }                                            << 
230   return enew;                                 << 
231 }                                                 185 }
232                                                   186 
233 G4double G4VEmissionProbability::FindRecoilExc << 187 G4double G4VEmissionProbability::FindRecoilExcitation(G4double e)
234 {                                                 188 {
                                                   >> 189   fExcRes = 0.0;
235   G4double mass = pEvapMass + fExc;               190   G4double mass = pEvapMass + fExc;
                                                   >> 191   // abnormal case - should never happens
                                                   >> 192   if(pMass < mass + pResMass) { return 0.0; }
236                                                   193     
237   G4double m02 = pMass*pMass;                  << 194   G4double m02   = pMass*pMass;
238   G4double m12 = mass*mass;                    << 195   G4double m12   = mass*mass;
239   G4double m22 = pResMass*pResMass;            << 196   G4double m22   = pResMass*pResMass;
240   G4double mres = std::sqrt(m02 + m12 - 2.*pMa << 197   G4double mres  = std::sqrt(m02 + m12 - 2.*pMass*(mass + e));
241                                                   198 
242   fExcRes = mres - pResMass;                      199   fExcRes = mres - pResMass;
                                                   >> 200   const G4double tolerance = 0.1*CLHEP::keV;
243                                                   201 
244   if(pVerbose > 1) {                              202   if(pVerbose > 1) {
245     G4cout << "### FindRecoilExcitation for re << 203     G4cout << "### G4VEmissionProbability::FindRecoilExcitation for resZ= " 
246            << resZ << " resA= " << resA           204            << resZ << " resA= " << resA 
247            << " evaporated Z= " << theZ << " A    205            << " evaporated Z= " << theZ << " A= " << theA
248      << " Ekin= " << e << " Eexc= " << fExcRes    206      << " Ekin= " << e << " Eexc= " << fExcRes << G4endl;
249   }                                               207   }
250                                                   208 
251   // residual nucleus is in the ground state      209   // residual nucleus is in the ground state
252   if(fExcRes < pTolerance) {                   << 210   if(fExcRes < tolerance) {
253     fExcRes = 0.0;                                211     fExcRes = 0.0;
254     return std::max(0.5*(m02 + m12 - m22)/pMas << 212     //G4cout<<"Ground state Ekin= "<< 0.5*(m02 + m12 - m22)/pMass - mass<<G4endl;
                                                   >> 213     return std::max(0.5*(m02 + m12 - m22)/pMass - mass,0.0);
255   }                                               214   }
256   if(!fFD) { return e; }                       << 
257                                                << 
258   // select final state excitation                215   // select final state excitation
259   auto lManager = pNuclearLevelData->GetLevelM    216   auto lManager = pNuclearLevelData->GetLevelManager(resZ, resA);
260   if(nullptr == lManager) { return e; }        << 217   if(!lManager) { return e; }
261                                                   218 
                                                   >> 219   //G4cout<<"ExcMax= "<< lManager->MaxLevelEnergy()<<" CB= "<<eCoulomb<<G4endl;
262   // levels are not known                         220   // levels are not known
263   if(fExcRes > lManager->MaxLevelEnergy() + pT << 221   if(fExcRes > lManager->MaxLevelEnergy() + tolerance) { return e; }
264                                                   222 
265   // find level                                   223   // find level
266   std::size_t idx = lManager->NearestLevelInde << 224   auto idx = lManager->NearestLevelIndex(fExcRes);
267   auto level = lManager->GetLevel(idx);        << 225   //G4cout << "idx= " << idx << " Exc= " << fExcRes 
268                                                << 226   //   << " Elevel= " << lManager->LevelEnergy(idx) << G4endl;
269   // unstable level                            << 227   for(; idx > 0; --idx) {
270   if (level->GetTimeGamma() == 0.0) { return e << 228     fExcRes = lManager->LevelEnergy(idx);
271                                                << 229     // excited level
272   // is possible to use level energy?          << 230     if(pMass > mass + pResMass + fExcRes && lManager->FloatingLevel(idx) == 0) { 
273   G4double elevel = lManager->LevelEnergy(idx) << 231       G4double massR = pResMass + fExcRes;
274   if (std::abs(elevel - fExcRes) > pWidth || p << 232       G4double mr2 = massR*massR;
275     return e;                                  << 233       //G4cout << "Result idx= " << idx << " Eexc= " << fExcRes
276   }                                            << 234       //     << " Ekin= " << 0.5*(m02 + m12 - mr2)/pMass - mass << G4endl;
277                                                << 235       return std::max(0.5*(m02 + m12 - mr2)/pMass - mass,0.0);
278   // long-lived level                          << 236     }
279   G4double massR = pResMass + elevel;          << 237   }
280   G4double mr2 = massR*massR;                  << 238   // ground level
281   fExcRes = elevel;                            << 239   fExcRes = 0.0;
282   return std::max(0.5*(m02 + m12 - mr2)/pMass  << 240   //G4cout << "Ground state Ekin= " << 0.5*(m02 + m12 - m22)/pMass - mass << G4endl;
                                                   >> 241   return std::max(0.5*(m02 + m12 - m22)/pMass - mass,0.0);
283 }                                                 242 }
284                                                   243