Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/management/src/G4VEmissionProbability.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/management/src/G4VEmissionProbability.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/management/src/G4VEmissionProbability.cc (Version 10.3.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4VEmissionProbability.cc 66241 2012-12-13 18:34:42Z gunter $
                                                   >>  28 //
 26 // Hadronic Process: Nuclear De-excitations        29 // Hadronic Process: Nuclear De-excitations
 27 // by V. Lara (Oct 1998)                           30 // by V. Lara (Oct 1998)
 28 //                                                 31 //
 29 // Modifications:                                  32 // Modifications:
 30 // 28.10.2010 V.Ivanchenko defined members in      33 // 28.10.2010 V.Ivanchenko defined members in constructor and cleaned up
 31                                                    34 
 32 #include "G4VEmissionProbability.hh"               35 #include "G4VEmissionProbability.hh"
 33 #include "G4NuclearLevelData.hh"                   36 #include "G4NuclearLevelData.hh"
 34 #include "G4LevelManager.hh"                   << 
 35 #include "G4DeexPrecoParameters.hh"                37 #include "G4DeexPrecoParameters.hh"
 36 #include "Randomize.hh"                        << 
 37 #include "G4Pow.hh"                            << 
 38 #include "G4Log.hh"                            << 
 39 #include "G4Exp.hh"                            << 
 40                                                << 
 41 G4VEmissionProbability::G4VEmissionProbability << 
 42   : pVerbose(1), theZ(Z), theA(A), elimit(CLHE << 
 43 {                                              << 
 44   pNuclearLevelData = G4NuclearLevelData::GetI << 
 45   pG4pow = G4Pow::GetInstance();               << 
 46   if(A > 0) { pEvapMass = G4NucleiProperties:: << 
 47   G4DeexPrecoParameters* param = pNuclearLevel << 
 48   OPTxs = param->GetDeexModelType();           << 
 49 }                                              << 
 50                                                << 
 51 void G4VEmissionProbability::Initialise()      << 
 52 {                                              << 
 53   G4DeexPrecoParameters* param = pNuclearLevel << 
 54   pVerbose = param->GetVerbose();              << 
 55   fFD = param->GetDiscreteExcitationFlag();    << 
 56   pTolerance = param->GetMinExcitation();      << 
 57   pWidth = param->GetNuclearLevelWidth();      << 
 58 }                                              << 
 59                                                    38 
 60 void G4VEmissionProbability::ResetIntegrator(s <<  39 G4VEmissionProbability::G4VEmissionProbability()
                                                   >>  40   :OPTxs(3),useSICB(false),LevelDensity(0.1) 
 61 {                                                  41 {
 62   if(de > 0.0)  { elimit = de; }               <<  42   fG4pow = G4Pow::GetInstance();
 63   if(eps > 0.0) { accuracy = eps; }            <<  43   fPairCorr = G4PairingCorrection::GetInstance();
 64 }                                              << 
 65                                                << 
 66 G4double G4VEmissionProbability::EmissionProba << 
 67 {                                              << 
 68   return 0.0;                                  << 
 69 }                                              << 
 70                                                << 
 71 G4double G4VEmissionProbability::ComputeProbab << 
 72 {                                              << 
 73   return 0.0;                                  << 
 74 }                                              << 
 75                                                << 
 76 G4double G4VEmissionProbability::IntegrateProb << 
 77                                                << 
 78                                                << 
 79 {                                              << 
 80   pProbability = 0.0;                          << 
 81   if(elow >= ehigh) { return pProbability; }   << 
 82                                                << 
 83   emin = elow;                                 << 
 84   emax = ehigh;                                << 
 85   eCoulomb = cb;                               << 
 86                                                << 
 87   const G4double edeltamin = 0.1*CLHEP::MeV;   << 
 88   const G4double edeltamax = 2*CLHEP::MeV;     << 
 89   G4double edelta = std::min(std::min(elimit,  << 
 90   G4double xbin = (emax - emin)/edelta + 1.0;  << 
 91   G4int ibin = std::max((G4int)xbin, 4);       << 
 92                                                << 
 93   // providing smart binning                   << 
 94   G4int nbin = ibin*5;                         << 
 95   edelta = (emax - emin)/ibin;                 << 
 96                                                << 
 97   G4double x(emin), y(0.0);                    << 
 98   G4double edelmicro = edelta*0.02;            << 
 99   probmax = ComputeProbability(x + edelmicro,  << 
100   G4double problast = probmax;                 << 
101   if(pVerbose > 1) {                           << 
102     G4cout << "### G4VEmissionProbability::Int << 
103      << "probmax=" << probmax << " Emin=" << e << 
104      << " Emax=" << emax << " QB=" << cb << "  << 
105      << G4endl;                                << 
106   }                                            << 
107   fE1 = fE2 = fP2 = 0.0;                       << 
108   G4double emax0 = emax - edelmicro;           << 
109   G4bool endpoint = false;                     << 
110   for(G4int i=0; i<nbin; ++i) {                << 
111     x += edelta;                               << 
112     if(x >= emax0) {                           << 
113       x = emax0;                               << 
114       endpoint = true;                         << 
115     }                                          << 
116     y = ComputeProbability(x, eCoulomb);       << 
117     if(pVerbose > 2) {                         << 
118       G4cout << "    " << i << ".  E= " << x < << 
119        << " Edel= " << edelta << G4endl;       << 
120     }                                          << 
121     if(y >= probmax) {                         << 
122       probmax = y;                             << 
123     } else if(0.0 == fE1 && 2*y < probmax) {   << 
124       fE1 = x;                                 << 
125     }                                          << 
126                                                << 
127     G4double del = (y + problast)*edelta*0.5;  << 
128     pProbability += del;                       << 
129     // end of the loop                         << 
130     if(del < accuracy*pProbability || endpoint << 
131     problast = y;                              << 
132                                                << 
133     // smart step definition                   << 
134     if(del != pProbability && del > 0.8*pProba << 
135        0.7*edelta > edeltamin) {               << 
136       edelta *= 0.7;                           << 
137     } else if(del < 0.1*pProbability && 1.5*ed << 
138       edelta *= 1.5;                           << 
139     }                                          << 
140   }                                            << 
141   if(fE1 > emin && fE1 < emax) {               << 
142     fE2 = std::max(0.5*(fE1 + emax), emax - ed << 
143     fP2 = 2*ComputeProbability(fE2, eCoulomb); << 
144   }                                            << 
145                                                << 
146   if(pVerbose > 1) {                           << 
147     G4cout << " Probability= " << pProbability << 
148            << probmax << " emin=" << emin << " << 
149      << " E1=" << fE1 << " E2=" << fE2 << G4en << 
150   }                                            << 
151   return pProbability;                         << 
152 }                                                  44 }
153                                                    45 
154 G4double G4VEmissionProbability::SampleEnergy( <<  46 G4VEmissionProbability::~G4VEmissionProbability() 
155 {                                              <<  47 {}
156   static const G4double fact = 1.05;           << 
157   static const G4double alim = 0.05;           << 
158   static const G4double blim = 20.;            << 
159   probmax *= fact;                             << 
160                                                << 
161   // two regions with flat and exponential maj << 
162   G4double del = emax - emin;                  << 
163   G4double p1 = 1.0;                           << 
164   G4double p2 = 0.0;                           << 
165   G4double a0 = 0.0;                           << 
166   G4double a1 = 1.0;                           << 
167   G4double x;                                  << 
168   if(fE1 > 0.0 && fP2 > 0.0 && fP2 < 0.5*probm << 
169     a0 = G4Log(probmax/fP2)/(fE2 - fE1);       << 
170     del= fE1 - emin;                           << 
171     p1 = del;                                  << 
172     x = a0*(emax - fE1);                       << 
173     if(x < blim) {                             << 
174       a1 = (x > alim) ? 1.0 - G4Exp(-x) : x*(1 << 
175     }                                          << 
176     p2 = a1/a0;                                << 
177     p1 /= (p1 + p2);                           << 
178     p2 = 1.0 - p1;                             << 
179   }                                            << 
180                                                << 
181   if(pVerbose > 1) {                           << 
182     G4cout << "### G4VEmissionProbability::Sam << 
183      << " Emin= " << emin << " Emax= " << emax << 
184            << "/n    E1=" << fE1 << " p1=" <<  << 
185      << " probmax=" << probmax << " P2=" << fP << 
186   }                                            << 
187                                                << 
188   CLHEP::HepRandomEngine* rndm = G4Random::get << 
189   const G4int nmax = 1000;                     << 
190   G4double ekin, gg, gmax;                     << 
191   G4int n = 0;                                 << 
192   do {                                         << 
193     ++n;                                       << 
194     G4double q = rndm->flat();                 << 
195     if (p2 == 0.0) {                           << 
196       gmax = probmax;                          << 
197       ekin = del*q + emin;                     << 
198     } else if (q <= p1) {                      << 
199       gmax = probmax;                          << 
200       ekin = del*q/p1 + emin;                  << 
201     } else {                                   << 
202       ekin = fE1 - G4Log(1.0 - (q - p1)*a1/p2) << 
203       x = a0*(ekin - fE1);                     << 
204       gmax = fP2;                              << 
205       if(x < blim) {                           << 
206   gmax = probmax*((x > alim) ? G4Exp(-x) : 1.0 << 
207       }                                        << 
208     }                                          << 
209     gg = ComputeProbability(ekin, eCoulomb);   << 
210     if(pVerbose > 2) {                         << 
211       G4cout << "    " << n                    << 
212        << ". prob= " << gg << " probmax= " <<  << 
213        << " Ekin= " << ekin << G4endl;         << 
214     }                                          << 
215     if((gg > gmax || n > nmax) && pVerbose > 1 << 
216       G4cout << "### G4VEmissionProbability::S << 
217              << " A= " << theA << " Eex(MeV)=" << 
218              << "\n    Warning n= " << n       << 
219        << " prob/gmax=" << gg/gmax             << 
220        << " prob=" << gg << " gmax=" << gmax < << 
221        << "\n    Ekin= " << ekin << " Emin= "  << 
222        << " Emax= " << emax << G4endl;         << 
223     }                                          << 
224   } while(gmax*rndm->flat() > gg && n < nmax); << 
225   G4double enew = FindRecoilExcitation(ekin);  << 
226   if(pVerbose > 1) {                           << 
227     G4cout << "### SampleEnergy: Efinal= "     << 
228      << enew << " E=" << ekin << "  Eexc=" <<  << 
229   }                                            << 
230   return enew;                                 << 
231 }                                              << 
232                                                    48 
233 G4double G4VEmissionProbability::FindRecoilExc <<  49 void G4VEmissionProbability::Initialise()
234 {                                                  50 {
235   G4double mass = pEvapMass + fExc;            <<  51   G4DeexPrecoParameters* param = G4NuclearLevelData::GetInstance()->GetParameters();
236                                                <<  52   OPTxs = param->GetDeexModelType();
237   G4double m02 = pMass*pMass;                  <<  53   LevelDensity = param->GetLevelDensity();
238   G4double m12 = mass*mass;                    << 
239   G4double m22 = pResMass*pResMass;            << 
240   G4double mres = std::sqrt(m02 + m12 - 2.*pMa << 
241                                                << 
242   fExcRes = mres - pResMass;                   << 
243                                                << 
244   if(pVerbose > 1) {                           << 
245     G4cout << "### FindRecoilExcitation for re << 
246            << resZ << " resA= " << resA        << 
247            << " evaporated Z= " << theZ << " A << 
248      << " Ekin= " << e << " Eexc= " << fExcRes << 
249   }                                            << 
250                                                << 
251   // residual nucleus is in the ground state   << 
252   if(fExcRes < pTolerance) {                   << 
253     fExcRes = 0.0;                             << 
254     return std::max(0.5*(m02 + m12 - m22)/pMas << 
255   }                                            << 
256   if(!fFD) { return e; }                       << 
257                                                << 
258   // select final state excitation             << 
259   auto lManager = pNuclearLevelData->GetLevelM << 
260   if(nullptr == lManager) { return e; }        << 
261                                                << 
262   // levels are not known                      << 
263   if(fExcRes > lManager->MaxLevelEnergy() + pT << 
264                                                << 
265   // find level                                << 
266   std::size_t idx = lManager->NearestLevelInde << 
267   auto level = lManager->GetLevel(idx);        << 
268                                                << 
269   // unstable level                            << 
270   if (level->GetTimeGamma() == 0.0) { return e << 
271                                                << 
272   // is possible to use level energy?          << 
273   G4double elevel = lManager->LevelEnergy(idx) << 
274   if (std::abs(elevel - fExcRes) > pWidth || p << 
275     return e;                                  << 
276   }                                            << 
277                                                << 
278   // long-lived level                          << 
279   G4double massR = pResMass + elevel;          << 
280   G4double mr2 = massR*massR;                  << 
281   fExcRes = elevel;                            << 
282   return std::max(0.5*(m02 + m12 - mr2)/pMass  << 
283 }                                                  54 }
284                                                    55