Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4ExcitationHandler.hh 67983 2013-03-13 10:42:03Z gcosmo $ >> 27 // 26 // Hadronic Process: Nuclear De-excitations 28 // Hadronic Process: Nuclear De-excitations 27 // by V. Lara (May 1998) 29 // by V. Lara (May 1998) 28 // 30 // 29 // Modifications: 31 // Modifications: 30 // 30 June 1998 by V. Lara: 32 // 30 June 1998 by V. Lara: 31 // -Using G4ParticleTable and therefore G 33 // -Using G4ParticleTable and therefore G4IonTable 32 // it can return all kind of fragments p 34 // it can return all kind of fragments produced in 33 // deexcitation 35 // deexcitation 34 // -It uses default algorithms for: 36 // -It uses default algorithms for: 35 // Evaporation: G4StatEvaporation 37 // Evaporation: G4StatEvaporation 36 // MultiFragmentation: G4DummyMF 38 // MultiFragmentation: G4DummyMF (a dummy one) 37 // Fermi Breakup model: G4StatFer 39 // Fermi Breakup model: G4StatFermiBreakUp 38 // 40 // 39 // 03 September 2008 by J. M. Quesada for exte 41 // 03 September 2008 by J. M. Quesada for external choice of inverse 40 // cross section option 42 // cross section option 41 // 06 September 2008 JMQ Also external choices 43 // 06 September 2008 JMQ Also external choices have been added for 42 // superimposed Coulomb barrier (if useSICB << 44 // superimposed Coulomb barrier (if useSICBis set true, by default is false) 43 // 23 January 2012 by V.Ivanchenko remove obso 45 // 23 January 2012 by V.Ivanchenko remove obsolete data members; added access 44 // methods to deexcitation components 46 // methods to deexcitation components 45 // 47 // 46 48 47 #ifndef G4ExcitationHandler_h 49 #ifndef G4ExcitationHandler_h 48 #define G4ExcitationHandler_h 1 50 #define G4ExcitationHandler_h 1 49 51 50 #include "globals.hh" 52 #include "globals.hh" 51 #include "G4Fragment.hh" 53 #include "G4Fragment.hh" 52 #include "G4ReactionProductVector.hh" 54 #include "G4ReactionProductVector.hh" 53 #include "G4IonTable.hh" 55 #include "G4IonTable.hh" 54 #include "G4DeexPrecoParameters.hh" << 55 #include "G4NistManager.hh" << 56 56 57 class G4VMultiFragmentation; 57 class G4VMultiFragmentation; 58 class G4VFermiBreakUp; 58 class G4VFermiBreakUp; 59 class G4VEvaporation; 59 class G4VEvaporation; 60 class G4VEvaporationChannel; 60 class G4VEvaporationChannel; 61 class G4ParticleTable; << 61 class G4FermiFragmentsPool; 62 62 63 class G4ExcitationHandler 63 class G4ExcitationHandler 64 { 64 { 65 public: 65 public: 66 66 67 G4ExcitationHandler(); 67 G4ExcitationHandler(); 68 ~G4ExcitationHandler(); 68 ~G4ExcitationHandler(); 69 69 70 G4ReactionProductVector* BreakItUp(const G4F << 70 private: >> 71 >> 72 G4ExcitationHandler(const G4ExcitationHandler &right); >> 73 const G4ExcitationHandler & operator=(const G4ExcitationHandler &right); >> 74 G4bool operator==(const G4ExcitationHandler &right) const; >> 75 G4bool operator!=(const G4ExcitationHandler &right) const; >> 76 >> 77 public: 71 78 72 // short model description used for automati << 79 G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState) const; 73 void ModelDescription(std::ostream& outFile) << 74 80 75 void Initialise(); << 81 void SetEvaporation(G4VEvaporation* ptr); 76 82 77 // user defined sub-models << 78 // deletion is responsibility of this handle << 79 void SetEvaporation(G4VEvaporation* ptr, G4b << 80 void SetMultiFragmentation(G4VMultiFragmenta 83 void SetMultiFragmentation(G4VMultiFragmentation* ptr); >> 84 81 void SetFermiModel(G4VFermiBreakUp* ptr); 85 void SetFermiModel(G4VFermiBreakUp* ptr); 82 void SetPhotonEvaporation(G4VEvaporationChan << 83 void SetDeexChannelsType(G4DeexChannelType v << 84 86 85 //======== Obsolete methods to be removed == << 87 void SetPhotonEvaporation(G4VEvaporationChannel* ptr); 86 88 87 // parameters of sub-models << 89 void SetMaxZForFermiBreakUp(G4int aZ); 88 inline void SetMaxZForFermiBreakUp(G4int aZ) << 90 void SetMaxAForFermiBreakUp(G4int anA); 89 inline void SetMaxAForFermiBreakUp(G4int anA << 91 void SetMaxAandZForFermiBreakUp(G4int anA,G4int aZ); 90 inline void SetMaxAandZForFermiBreakUp(G4int << 92 void SetMinEForMultiFrag(G4double anE); 91 inline void SetMinEForMultiFrag(G4double anE << 92 93 93 // access methods 94 // access methods 94 G4VEvaporation* GetEvaporation(); << 95 inline G4VEvaporation* GetEvaporation(); 95 G4VMultiFragmentation* GetMultiFragmentation << 96 inline G4VMultiFragmentation* GetMultiFragmentation(); 96 G4VFermiBreakUp* GetFermiModel(); << 97 inline G4VFermiBreakUp* GetFermiModel(); 97 G4VEvaporationChannel* GetPhotonEvaporation( << 98 inline G4VEvaporationChannel* GetPhotonEvaporation(); 98 99 99 // for inverse cross section choice 100 // for inverse cross section choice 100 inline void SetOPTxs(G4int opt); 101 inline void SetOPTxs(G4int opt); 101 // for superimposed Coulomb Barrier for inve << 102 // for superimposed Coulomb Barrir for inverse cross sections 102 inline void UseSICB(); 103 inline void UseSICB(); 103 104 104 //========================================== << 105 << 106 G4ExcitationHandler(const G4ExcitationHandle << 107 const G4ExcitationHandler & operator << 108 =(const G4ExcitationHandler &right) = delete << 109 G4bool operator==(const G4ExcitationHandler << 110 G4bool operator!=(const G4ExcitationHandler << 111 << 112 private: 105 private: 113 106 114 void SetParameters(); 107 void SetParameters(); 115 << 116 inline void SortSecondaryFragment(G4Fragment << 117 108 118 G4VEvaporation* theEvaporation{nullptr}; << 109 G4VEvaporation* theEvaporation; >> 110 119 G4VMultiFragmentation* theMultiFragmentation 111 G4VMultiFragmentation* theMultiFragmentation; >> 112 120 G4VFermiBreakUp* theFermiModel; 113 G4VFermiBreakUp* theFermiModel; >> 114 121 G4VEvaporationChannel* thePhotonEvaporation; 115 G4VEvaporationChannel* thePhotonEvaporation; 122 G4ParticleTable* thePartTable; << 123 G4IonTable* theTableOfIons; << 124 G4NistManager* nist; << 125 << 126 const G4ParticleDefinition* theElectron; << 127 const G4ParticleDefinition* theNeutron; << 128 const G4ParticleDefinition* theProton; << 129 const G4ParticleDefinition* theDeuteron; << 130 const G4ParticleDefinition* theTriton; << 131 const G4ParticleDefinition* theHe3; << 132 const G4ParticleDefinition* theAlpha; << 133 const G4ParticleDefinition* theLambda; << 134 116 135 G4int icID{0}; << 117 G4FermiFragmentsPool* thePool; 136 << 137 G4int maxZForFermiBreakUp{9}; << 138 G4int maxAForFermiBreakUp{17}; << 139 << 140 G4int fVerbose{1}; << 141 G4int fWarnings{0}; << 142 118 >> 119 G4int maxZForFermiBreakUp; >> 120 G4int maxAForFermiBreakUp; 143 G4double minEForMultiFrag; 121 G4double minEForMultiFrag; 144 G4double minExcitation; 122 G4double minExcitation; 145 G4double maxExcitation; << 146 G4double fLambdaMass; << 147 << 148 G4bool isInitialised{false}; << 149 G4bool isEvapLocal{true}; << 150 G4bool isActive{true}; << 151 123 152 // list of fragments to store final result << 124 G4IonTable* theTableOfIons; 153 std::vector<G4Fragment*> theResults; << 154 << 155 // list of fragments to store intermediate r << 156 std::vector<G4Fragment*> results; << 157 125 158 // list of fragments to apply Evaporation or << 126 G4int OPTxs; 159 std::vector<G4Fragment*> theEvapList; << 127 G4bool useSICB; >> 128 G4bool isEvapLocal; >> 129 160 }; 130 }; 161 131 162 inline void G4ExcitationHandler::SetMaxZForFer << 132 inline G4VEvaporation* G4ExcitationHandler::GetEvaporation() 163 { 133 { 164 maxZForFermiBreakUp = aZ; << 134 return theEvaporation; 165 } 135 } 166 136 167 inline void G4ExcitationHandler::SetMaxAForFer << 137 inline G4VMultiFragmentation* G4ExcitationHandler::GetMultiFragmentation() 168 { 138 { 169 maxAForFermiBreakUp = anA; << 139 return theMultiFragmentation; 170 } 140 } 171 141 172 inline void G4ExcitationHandler::SetMaxAandZFo << 142 inline G4VFermiBreakUp* G4ExcitationHandler::GetFermiModel() 173 { 143 { 174 SetMaxAForFermiBreakUp(anA); << 144 return theFermiModel; 175 SetMaxZForFermiBreakUp(aZ); << 176 } 145 } 177 146 178 inline void G4ExcitationHandler::SetMinEForMul << 147 inline G4VEvaporationChannel* G4ExcitationHandler::GetPhotonEvaporation() 179 { 148 { 180 minEForMultiFrag = anE; << 149 return thePhotonEvaporation; 181 } 150 } 182 151 183 inline void G4ExcitationHandler::SortSecondary << 152 inline void G4ExcitationHandler::SetOPTxs(G4int opt) 184 { 153 { 185 G4int A = frag->GetA_asInt(); << 154 OPTxs = opt; >> 155 SetParameters(); >> 156 } 186 157 187 // gamma, e-, p, n << 158 inline void G4ExcitationHandler::UseSICB() 188 if(A <= 1 || frag->IsLongLived()) { << 159 { 189 theResults.push_back(frag); << 160 useSICB = true; 190 } else if(frag->GetExcitationEnergy() < minE << 161 SetParameters(); 191 // cold fragments << 192 G4int Z = frag->GetZ_asInt(); << 193 << 194 // is stable or d, t, He3, He4 << 195 if(nist->GetIsotopeAbundance(Z, A) > 0.0 | << 196 theResults.push_back(frag); // stable fr << 197 } else { << 198 theEvapList.push_back(frag); << 199 } << 200 // hot fragments are unstable << 201 } else { << 202 theEvapList.push_back(frag); << 203 } << 204 } 162 } 205 163 206 #endif 164 #endif 207 165