Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/ablation/src/G4WilsonAblationModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/de_excitation/ablation/src/G4WilsonAblationModel.cc (Version 11.3.0) and /processes/hadronic/models/de_excitation/ablation/src/G4WilsonAblationModel.cc (Version 9.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // *                                               20 // *                                                                  *
 21 // * Parts of this code which have been  devel     21 // * Parts of this code which have been  developed by QinetiQ Ltd     *
 22 // * under contract to the European Space Agen     22 // * under contract to the European Space Agency (ESA) are the        *
 23 // * intellectual property of ESA. Rights to u     23 // * intellectual property of ESA. Rights to use, copy, modify and    *
 24 // * redistribute this software for general pu     24 // * redistribute this software for general public use are granted    *
 25 // * in compliance with any licensing, distrib     25 // * in compliance with any licensing, distribution and development   *
 26 // * policy adopted by the Geant4 Collaboratio     26 // * policy adopted by the Geant4 Collaboration. This code has been   *
 27 // * written by QinetiQ Ltd for the European S     27 // * written by QinetiQ Ltd for the European Space Agency, under ESA  *
 28 // * contract 17191/03/NL/LvH (Aurora Programm     28 // * contract 17191/03/NL/LvH (Aurora Programme).                     *
 29 // *                                               29 // *                                                                  *
 30 // * By using,  copying,  modifying or  distri     30 // * By using,  copying,  modifying or  distributing the software (or *
 31 // * any work based  on the software)  you  ag     31 // * any work based  on the software)  you  agree  to acknowledge its *
 32 // * use  in  resulting  scientific  publicati     32 // * use  in  resulting  scientific  publications,  and indicate your *
 33 // * acceptance of all terms of the Geant4 Sof     33 // * acceptance of all terms of the Geant4 Software license.          *
 34 // *******************************************     34 // ********************************************************************
 35 //                                                 35 //
 36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 37 //                                                 37 //
 38 // MODULE:              G4WilsonAblationModel.     38 // MODULE:              G4WilsonAblationModel.cc
 39 //                                                 39 //
 40 // Version:   1.0                              <<  40 // Version:   B.1
 41 // Date:    08/12/2009                         <<  41 // Date:    15/04/04
 42 // Author:    P R Truscott                         42 // Author:    P R Truscott
 43 // Organisation:  QinetiQ Ltd, UK                  43 // Organisation:  QinetiQ Ltd, UK
 44 // Customer:    ESA/ESTEC, NOORDWIJK               44 // Customer:    ESA/ESTEC, NOORDWIJK
 45 // Contract:    17191/03/NL/LvH                    45 // Contract:    17191/03/NL/LvH
 46 //                                                 46 //
 47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 48 //                                                 48 //
 49 // CHANGE HISTORY                                  49 // CHANGE HISTORY
 50 // --------------                                  50 // --------------
 51 //                                                 51 //
 52 // 6 October 2003, P R Truscott, QinetiQ Ltd,      52 // 6 October 2003, P R Truscott, QinetiQ Ltd, UK
 53 // Created.                                        53 // Created.
 54 //                                                 54 //
 55 // 15 March 2004, P R Truscott, QinetiQ Ltd, U     55 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK
 56 // Beta release                                    56 // Beta release
 57 //                                                 57 //
 58 // 08 December 2009, P R Truscott, QinetiQ Ltd << 
 59 // Ver 1.0                                     << 
 60 // Updated as a result of changes in the G4Eva << 
 61 // affect mostly SelectSecondariesByEvaporatio << 
 62 // associated with the evaporation model which << 
 63 //    OPTxs to select the inverse cross-sectio << 
 64 //    OPTxs = 0      => Dostrovski's parameter << 
 65 //    OPTxs = 1 or 2 => Chatterjee's paramater << 
 66 //    OPTxs = 3 or 4 => Kalbach's parameteriza << 
 67 //    useSICB        => use superimposed Coulo << 
 68 //                      sections               << 
 69 // Other problem found with G4Fragment definit << 
 70 // **G4ParticleDefinition**.  This does not al << 
 71 // fragment for some reason.  Now the fragment << 
 72 //    G4Fragment *fragment = new G4Fragment(A, << 
 73 // to avoid this quirk.  Bug found in SelectSe << 
 74 // equated to evapType[i] whereas previously i << 
 75 //                                             << 
 76 // 06 August 2015, A. Ribon, CERN              << 
 77 // Migrated std::exp and std::pow to the faste << 
 78 //                                             << 
 79 // 09 June 2017, C. Mancini Terracciano, INFN  << 
 80 // Fixed bug on the initialization of Photon E << 
 81 //                                             << 
 82 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     58 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 83 //////////////////////////////////////////////     59 ////////////////////////////////////////////////////////////////////////////////
 84 //                                                 60 //
 85 #include <iomanip>                             << 
 86 #include <numeric>                             << 
 87                                                << 
 88 #include "G4WilsonAblationModel.hh"                61 #include "G4WilsonAblationModel.hh"
 89 #include "G4PhysicalConstants.hh"              << 
 90 #include "G4SystemOfUnits.hh"                  << 
 91 #include "Randomize.hh"                            62 #include "Randomize.hh"
 92 #include "G4ParticleTable.hh"                      63 #include "G4ParticleTable.hh"
 93 #include "G4IonTable.hh"                           64 #include "G4IonTable.hh"
 94 #include "G4Alpha.hh"                              65 #include "G4Alpha.hh"
 95 #include "G4He3.hh"                                66 #include "G4He3.hh"
 96 #include "G4Triton.hh"                             67 #include "G4Triton.hh"
 97 #include "G4Deuteron.hh"                           68 #include "G4Deuteron.hh"
 98 #include "G4Proton.hh"                             69 #include "G4Proton.hh"
 99 #include "G4Neutron.hh"                            70 #include "G4Neutron.hh"
100 #include "G4AlphaEvaporationChannel.hh"            71 #include "G4AlphaEvaporationChannel.hh"
101 #include "G4He3EvaporationChannel.hh"              72 #include "G4He3EvaporationChannel.hh"
102 #include "G4TritonEvaporationChannel.hh"           73 #include "G4TritonEvaporationChannel.hh"
103 #include "G4DeuteronEvaporationChannel.hh"         74 #include "G4DeuteronEvaporationChannel.hh"
104 #include "G4ProtonEvaporationChannel.hh"           75 #include "G4ProtonEvaporationChannel.hh"
105 #include "G4NeutronEvaporationChannel.hh"          76 #include "G4NeutronEvaporationChannel.hh"
106 #include "G4PhotonEvaporation.hh"              << 
107 #include "G4LorentzVector.hh"                      77 #include "G4LorentzVector.hh"
108 #include "G4VEvaporationChannel.hh"                78 #include "G4VEvaporationChannel.hh"
109                                                    79 
110 #include "G4Exp.hh"                            <<  80 #include <iomanip>
111 #include "G4Pow.hh"                            <<  81 #include <numeric>
112                                                << 
113 #include "G4PhysicsModelCatalog.hh"            << 
114                                                << 
115 //////////////////////////////////////////////     82 ////////////////////////////////////////////////////////////////////////////////
116 //                                                 83 //
117 G4WilsonAblationModel::G4WilsonAblationModel()     84 G4WilsonAblationModel::G4WilsonAblationModel()
118 {                                                  85 {
119 //                                                 86 //
120 //                                                 87 //
121 // Send message to stdout to advise that the G     88 // Send message to stdout to advise that the G4Abrasion model is being used.
122 //                                                 89 //
123   PrintWelcomeMessage();                           90   PrintWelcomeMessage();
124 //                                                 91 //
125 //                                                 92 //
126 // Set the default verbose level to 0 - no out     93 // Set the default verbose level to 0 - no output.
127 //                                                 94 //
128   verboseLevel = 0;                                95   verboseLevel = 0;  
129 //                                                 96 //
130 //                                                 97 //
131 // Set the binding energy per nucleon .... did     98 // Set the binding energy per nucleon .... did I mention that this is a crude
132 // model for nuclear de-excitation?                99 // model for nuclear de-excitation?
133 //                                                100 //
134   B = 10.0 * MeV;                                 101   B = 10.0 * MeV;
135 //                                                102 //
136 //                                                103 //
137 // It is possuble to switch off secondary part    104 // It is possuble to switch off secondary particle production (other than the
138 // final nuclear fragment).  The default is on    105 // final nuclear fragment).  The default is on.
139 //                                                106 //
140   produceSecondaries = true;                      107   produceSecondaries = true;
141 //                                                108 //
142 //                                                109 //
143 // Now we need to define the decay modes.  We'    110 // Now we need to define the decay modes.  We're using the G4Evaporation model
144 // to help determine the kinematics of the dec    111 // to help determine the kinematics of the decay.
145 //                                                112 //
146   nFragTypes  = 6;                                113   nFragTypes  = 6;
147   fragType[0] = G4Alpha::Alpha();                 114   fragType[0] = G4Alpha::Alpha();
148   fragType[1] = G4He3::He3();                     115   fragType[1] = G4He3::He3();
149   fragType[2] = G4Triton::Triton();               116   fragType[2] = G4Triton::Triton();
150   fragType[3] = G4Deuteron::Deuteron();           117   fragType[3] = G4Deuteron::Deuteron();
151   fragType[4] = G4Proton::Proton();               118   fragType[4] = G4Proton::Proton();
152   fragType[5] = G4Neutron::Neutron();             119   fragType[5] = G4Neutron::Neutron();
153   for(G4int i=0; i<200; ++i) { fSig[i] = 0.0;  << 
154 //                                                120 //
155 //                                                121 //
156 // Set verboseLevel default to no output.         122 // Set verboseLevel default to no output.
157 //                                                123 //
158   verboseLevel = 0;                               124   verboseLevel = 0;
159   theChannelFactory = new G4EvaporationFactory << 
160   theChannels = theChannelFactory->GetChannel( << 
161 //                                             << 
162 //                                             << 
163 // Set defaults for evaporation classes.  Thes << 
164 // "set" methods.                              << 
165 //                                             << 
166   OPTxs   = 3;                                 << 
167   useSICB = false;                             << 
168   fragmentVector = 0;                          << 
169                                                << 
170   secID = G4PhysicsModelCatalog::GetModelID("m << 
171 }                                                 125 }
172 //////////////////////////////////////////////    126 ////////////////////////////////////////////////////////////////////////////////
173 //                                                127 //
174 G4WilsonAblationModel::~G4WilsonAblationModel(    128 G4WilsonAblationModel::~G4WilsonAblationModel()
175 {}                                             << 129 {;}
176                                                << 
177 //////////////////////////////////////////////    130 ////////////////////////////////////////////////////////////////////////////////
178 //                                                131 //
179 G4FragmentVector *G4WilsonAblationModel::Break    132 G4FragmentVector *G4WilsonAblationModel::BreakItUp
180   (const G4Fragment &theNucleus)                  133   (const G4Fragment &theNucleus)
181 {                                                 134 {
182 //                                                135 //
183 //                                                136 //
184 // Initilise the pointer to the G4FragmentVect    137 // Initilise the pointer to the G4FragmentVector used to return the information
185 // about the breakup.                             138 // about the breakup.
186 //                                                139 //
187   fragmentVector = new G4FragmentVector;          140   fragmentVector = new G4FragmentVector;
188   fragmentVector->clear();                        141   fragmentVector->clear();
189 //                                                142 //
190 //                                                143 //
191 // Get the A, Z and excitation of the nucleus.    144 // Get the A, Z and excitation of the nucleus.
192 //                                                145 //
193   G4int A     = theNucleus.GetA_asInt();       << 146   G4int A     = (G4int) theNucleus.GetA();
194   G4int Z     = theNucleus.GetZ_asInt();       << 147   G4int Z     = (G4int) theNucleus.GetZ();
195   G4double ex = theNucleus.GetExcitationEnergy    148   G4double ex = theNucleus.GetExcitationEnergy();
196   if (verboseLevel >= 2)                          149   if (verboseLevel >= 2)
197   {                                               150   {
198     G4cout <<"oooooooooooooooooooooooooooooooo    151     G4cout <<"oooooooooooooooooooooooooooooooooooooooo"
199            <<"oooooooooooooooooooooooooooooooo    152            <<"oooooooooooooooooooooooooooooooooooooooo"
200            <<G4endl;                              153            <<G4endl;
201     G4cout.precision(6);                          154     G4cout.precision(6);
202     G4cout <<"IN G4WilsonAblationModel" <<G4en    155     G4cout <<"IN G4WilsonAblationModel" <<G4endl;
203     G4cout <<"Initial prefragment A=" <<A         156     G4cout <<"Initial prefragment A=" <<A
204            <<", Z=" <<Z                           157            <<", Z=" <<Z
205            <<", excitation energy = " <<ex/MeV    158            <<", excitation energy = " <<ex/MeV <<" MeV"
206            <<G4endl;                              159            <<G4endl; 
207   }                                               160   }
208 //                                                161 //
209 //                                                162 //
210 // Check that there is a nucleus to speak of.     163 // Check that there is a nucleus to speak of.  It's possible there isn't one
211 // or its just a proton or neutron.  In either    164 // or its just a proton or neutron.  In either case, the excitation energy
212 // (from the Lorentz vector) is not used.         165 // (from the Lorentz vector) is not used.
213 //                                                166 //
214   if (A == 0)                                     167   if (A == 0)
215   {                                               168   {
216     if (verboseLevel >= 2)                        169     if (verboseLevel >= 2)
217     {                                             170     {
218       G4cout <<"No nucleus to decay" <<G4endl;    171       G4cout <<"No nucleus to decay" <<G4endl;
219       G4cout <<"oooooooooooooooooooooooooooooo    172       G4cout <<"oooooooooooooooooooooooooooooooooooooooo"
220              <<"oooooooooooooooooooooooooooooo    173              <<"oooooooooooooooooooooooooooooooooooooooo"
221              <<G4endl;                            174              <<G4endl;
222     }                                             175     }
223     return fragmentVector;                        176     return fragmentVector;
224   }                                               177   }
225   else if (A == 1)                                178   else if (A == 1)
226   {                                               179   {
227     G4LorentzVector lorentzVector = theNucleus    180     G4LorentzVector lorentzVector = theNucleus.GetMomentum();
228     lorentzVector.setE(lorentzVector.e()-ex+10    181     lorentzVector.setE(lorentzVector.e()-ex+10.0*eV);
229     if (Z == 0)                                   182     if (Z == 0)
230     {                                             183     {
231       G4Fragment *fragment = new G4Fragment(lo    184       G4Fragment *fragment = new G4Fragment(lorentzVector,G4Neutron::Neutron());
232       if (fragment != nullptr) { fragment->Set << 
233       fragmentVector->push_back(fragment);        185       fragmentVector->push_back(fragment);
234     }                                             186     }
235     else                                          187     else
236     {                                             188     {
237       G4Fragment *fragment = new G4Fragment(lo    189       G4Fragment *fragment = new G4Fragment(lorentzVector,G4Proton::Proton());
238       if (fragment != nullptr) { fragment->Set << 
239       fragmentVector->push_back(fragment);        190       fragmentVector->push_back(fragment);
240     }                                             191     }
241     if (verboseLevel >= 2)                        192     if (verboseLevel >= 2)
242     {                                             193     {
243       G4cout <<"Final fragment is in fact only    194       G4cout <<"Final fragment is in fact only a nucleon) :" <<G4endl;
244       G4cout <<(*fragmentVector)[0] <<G4endl;     195       G4cout <<(*fragmentVector)[0] <<G4endl;
245       G4cout <<"oooooooooooooooooooooooooooooo    196       G4cout <<"oooooooooooooooooooooooooooooooooooooooo"
246              <<"oooooooooooooooooooooooooooooo    197              <<"oooooooooooooooooooooooooooooooooooooooo"
247              <<G4endl;                            198              <<G4endl;
248     }                                             199     }
249     return fragmentVector;                        200     return fragmentVector;
250   }                                               201   }
251 //                                                202 //
252 //                                                203 //
253 // Then the number of nucleons ablated (either    204 // Then the number of nucleons ablated (either as nucleons or light nuclear
254 // fragments) is based on a simple argument fo    205 // fragments) is based on a simple argument for the binding energy per nucleon.
255 //                                                206 //
256   G4int DAabl = (G4int) (ex / B);                 207   G4int DAabl = (G4int) (ex / B);
257   if (DAabl > A) DAabl = A;                       208   if (DAabl > A) DAabl = A;
258 // The following lines are no longer accurate  << 209   if (verboseLevel >= 2)
259 //  if (verboseLevel >= 2)                     << 210     G4cout <<"Number of nucleons ejected = " <<DAabl <<G4endl;
260 //    G4cout <<"Number of nucleons ejected = " << 
261                                                   211 
262 //                                                212 //
263 //                                                213 //
264 // Determine the nuclear fragment from the abl    214 // Determine the nuclear fragment from the ablation process by sampling the
265 // Rudstam equation.                              215 // Rudstam equation.
266 //                                                216 //
267   G4int AF = A - DAabl;                           217   G4int AF = A - DAabl;
268   G4int ZF = 0;                                   218   G4int ZF = 0;
269                                                << 
270   if (AF > 0)                                     219   if (AF > 0)
271   {                                               220   {
272     G4Pow* g4calc = G4Pow::GetInstance();      << 221     G4double AFd = static_cast<G4double>(AF);
273     G4double AFd = (G4double) AF;              << 222     G4double R = 11.8 / std::pow(AFd, 0.45);
274     G4double R = 11.8 / g4calc->powZ(AF, 0.45) << 223     G4int minZ = Z - DAabl;
275     G4int minZ = std::max(1, Z - DAabl);       << 224     if (minZ <= 0) minZ = 1;
276 //                                                225 //
277 //                                                226 //
278 // Here we define an integral probability dist    227 // Here we define an integral probability distribution based on the Rudstam
279 // equation assuming a constant AF.               228 // equation assuming a constant AF.
280 //                                                229 //    
281     G4int zmax = std::min(199, Z);             << 230     G4double sig[100];
282     G4double sum = 0.0;                           231     G4double sum = 0.0;
283     for (ZF=minZ; ZF<=zmax; ++ZF)              << 232     for (G4int ii=minZ; ii<= Z; ii++)
284     {                                             233     {
285       sum += G4Exp(-R*g4calc->powA(std::abs(ZF << 234       sum   += std::exp(-R*std::pow(std::abs(ii - 0.486*AFd + 3.8E-04*AFd*AFd),1.5));
286       fSig[ZF] = sum;                          << 235       sig[ii] = sum;
287     }                                             236     }
288 //                                                237 //
289 //                                                238 //
290 // Now sample that distribution to determine a    239 // Now sample that distribution to determine a value for ZF.
291 //                                                240 //
292     sum *= G4UniformRand();                    << 241     G4double xi  = G4UniformRand();
293     for (ZF=minZ; ZF<=zmax; ++ZF) {            << 242     G4int iz     = minZ;
294       if(sum <= fSig[ZF]) { break; }           << 243     G4bool found = false;
295     }                                          << 244     while (iz <= Z && !found)
                                                   >> 245     {
                                                   >> 246       found = (xi <= sig[iz]/sum);
                                                   >> 247       if (!found) iz++;
                                                   >> 248     }
                                                   >> 249     if (iz > Z)
                                                   >> 250       ZF = Z;
                                                   >> 251     else
                                                   >> 252       ZF = iz;
296   }                                               253   }
297   G4int DZabl = Z - ZF;                           254   G4int DZabl = Z - ZF;
                                                   >> 255   if (verboseLevel >= 2)
                                                   >> 256     G4cout <<"Final fragment      A=" <<AF
                                                   >> 257            <<", Z=" <<ZF
                                                   >> 258            <<G4endl;
298 //                                                259 //
299 //                                                260 //
300 // Now determine the nucleons or nuclei which     261 // Now determine the nucleons or nuclei which have bee ablated.  The preference
301 // is for the production of alphas, then other    262 // is for the production of alphas, then other nuclei in order of decreasing
302 // binding energy. The energies assigned to th    263 // binding energy. The energies assigned to the products of the decay are
303 // provisional for the moment (the 10eV is jus    264 // provisional for the moment (the 10eV is just to avoid errors with negative
304 // excitation energies due to rounding).          265 // excitation energies due to rounding).
305 //                                                266 //
306   G4double totalEpost = 0.0;                      267   G4double totalEpost = 0.0;
307   evapType.clear();                               268   evapType.clear();
308   for (G4int ift=0; ift<nFragTypes; ift++)        269   for (G4int ift=0; ift<nFragTypes; ift++)
309   {                                               270   {
310     G4ParticleDefinition *type = fragType[ift]    271     G4ParticleDefinition *type = fragType[ift];
311     G4double n  = std::floor((G4double) DAabl     272     G4double n  = std::floor((G4double) DAabl / type->GetBaryonNumber() + 1.0E-10);
312     G4double n1 = 1.0E+10;                        273     G4double n1 = 1.0E+10;
313     if (fragType[ift]->GetPDGCharge() > 0.0)      274     if (fragType[ift]->GetPDGCharge() > 0.0)
314       n1 = std::floor((G4double) DZabl / type-    275       n1 = std::floor((G4double) DZabl / type->GetPDGCharge() + 1.0E-10);
315     if (n > n1) n = n1;                           276     if (n > n1) n = n1;
316     if (n > 0.0)                                  277     if (n > 0.0)
317     {                                             278     {
318       G4double mass = type->GetPDGMass();         279       G4double mass = type->GetPDGMass();
319       for (G4int j=0; j<(G4int) n; j++)           280       for (G4int j=0; j<(G4int) n; j++)
320       {                                           281       {
321         totalEpost += mass;                       282         totalEpost += mass;
322         evapType.push_back(type);                 283         evapType.push_back(type);
323       }                                           284       }
324       DAabl -= (G4int) (n * type->GetBaryonNum    285       DAabl -= (G4int) (n * type->GetBaryonNumber() + 1.0E-10);
325       DZabl -= (G4int) (n * type->GetPDGCharge    286       DZabl -= (G4int) (n * type->GetPDGCharge() + 1.0E-10);
                                                   >> 287       if (verboseLevel >= 2)
                                                   >> 288         G4cout <<"Particle type: " <<std::setw(10) <<type->GetParticleName()
                                                   >> 289                <<", number of particles emitted = " <<n
                                                   >> 290                <<G4endl;
326     }                                             291     }
327   }                                               292   }
328 //                                                293 //
329 //                                                294 //
330 // Determine the properties of the final nucle << 295 // Determine the properties of the final nuclear fragment.
331 // the final fragment is predicted to have a n << 
332 // really it's the particle last in the vector << 
333 // final fragment.  Therefore delete this from << 
334 // case.                                       << 
335 //                                                296 //
336   G4double massFinalFrag = 0.0;                   297   G4double massFinalFrag = 0.0;
337   if (AF > 0)                                  << 298   if (AF > 0.0)
338     massFinalFrag = G4ParticleTable::GetPartic    299     massFinalFrag = G4ParticleTable::GetParticleTable()->GetIonTable()->
339       GetIonMass(ZF,AF);                          300       GetIonMass(ZF,AF);
340   else                                         << 
341   {                                            << 
342     G4ParticleDefinition *type = evapType[evap << 
343     AF                         = type->GetBary << 
344     ZF                         = (G4int) (type << 
345     evapType.erase(evapType.end()-1);          << 
346   }                                            << 
347   totalEpost   += massFinalFrag;                  301   totalEpost   += massFinalFrag;
348 //                                                302 //
349 //                                                303 //
350 // Provide verbose output on the nuclear fragm << 
351 //                                             << 
352   if (verboseLevel >= 2)                       << 
353   {                                            << 
354     G4cout <<"Final fragment      A=" <<AF     << 
355            <<", Z=" <<ZF                       << 
356            <<G4endl;                           << 
357     for (G4int ift=0; ift<nFragTypes; ift++)   << 
358     {                                          << 
359       G4ParticleDefinition *type = fragType[if << 
360       G4long n = std::count(evapType.cbegin(), << 
361       if (n > 0)                               << 
362         G4cout <<"Particle type: " <<std::setw << 
363                <<", number of particles emitte << 
364     }                                          << 
365   }                                            << 
366 //                                             << 
367 // Add the total energy from the fragment.  No    304 // Add the total energy from the fragment.  Note that the fragment is assumed
368 // to be de-excited and does not undergo photo    305 // to be de-excited and does not undergo photo-evaporation .... I did mention
369 // this is a bit of a crude model?                306 // this is a bit of a crude model?
370 //                                                307 //
371   G4double massPreFrag      = theNucleus.GetGr    308   G4double massPreFrag      = theNucleus.GetGroundStateMass();
372   G4double totalEpre        = massPreFrag + ex    309   G4double totalEpre        = massPreFrag + ex;
373   G4double excess           = totalEpre - tota    310   G4double excess           = totalEpre - totalEpost;
374 //  G4Fragment *resultNucleus(theNucleus);        311 //  G4Fragment *resultNucleus(theNucleus);
375   G4Fragment *resultNucleus = new G4Fragment(A    312   G4Fragment *resultNucleus = new G4Fragment(A, Z, theNucleus.GetMomentum());
376   G4ThreeVector boost(0.0,0.0,0.0);               313   G4ThreeVector boost(0.0,0.0,0.0);
377   std::size_t nEvap = 0;                       << 314   G4int nEvap = 0;
378   if (produceSecondaries && evapType.size()>0)    315   if (produceSecondaries && evapType.size()>0)
379   {                                               316   {
380     if (excess > 0.0)                             317     if (excess > 0.0)
381     {                                             318     {
382       SelectSecondariesByEvaporation (resultNu    319       SelectSecondariesByEvaporation (resultNucleus);
383       nEvap = fragmentVector->size();             320       nEvap = fragmentVector->size();
384       boost = resultNucleus->GetMomentum().fin    321       boost = resultNucleus->GetMomentum().findBoostToCM();
385       if (evapType.size() > 0)                    322       if (evapType.size() > 0)
386         SelectSecondariesByDefault (boost);       323         SelectSecondariesByDefault (boost);
387     }                                             324     }
388     else                                          325     else
389       SelectSecondariesByDefault(G4ThreeVector    326       SelectSecondariesByDefault(G4ThreeVector(0.0,0.0,0.0));
390   }                                               327   }
391                                                << 
392   if (AF > 0)                                     328   if (AF > 0)
393   {                                               329   {
394     G4double mass = G4ParticleTable::GetPartic    330     G4double mass = G4ParticleTable::GetParticleTable()->GetIonTable()->
395       GetIonMass(ZF,AF);                          331       GetIonMass(ZF,AF);
396     G4double e    = mass + 10.0*eV;               332     G4double e    = mass + 10.0*eV;
397     G4double p    = std::sqrt(e*e-mass*mass);     333     G4double p    = std::sqrt(e*e-mass*mass);
398     G4ThreeVector direction(0.0,0.0,1.0);         334     G4ThreeVector direction(0.0,0.0,1.0);
399     G4LorentzVector lorentzVector = G4LorentzV    335     G4LorentzVector lorentzVector = G4LorentzVector(direction*p, e);
400     lorentzVector.boost(-boost);                  336     lorentzVector.boost(-boost);
401     G4Fragment* frag = new G4Fragment(AF, ZF,  << 337     *resultNucleus = G4Fragment(AF, ZF, lorentzVector);
402     if (frag != nullptr) { frag->SetCreatorMod << 338     fragmentVector->push_back(resultNucleus);
403     fragmentVector->push_back(frag);           << 
404   }                                               339   }
405   delete resultNucleus;                        << 
406 //                                                340 //
407 //                                                341 //
408 // Provide verbose output on the ablation prod    342 // Provide verbose output on the ablation products if requested.
409 //                                                343 //
410   if (verboseLevel >= 2)                          344   if (verboseLevel >= 2)
411   {                                               345   {
412     if (nEvap > 0)                                346     if (nEvap > 0)
413     {                                             347     {
414       G4cout <<"----------------------" <<G4en    348       G4cout <<"----------------------" <<G4endl;
415       G4cout <<"Evaporated particles :" <<G4en    349       G4cout <<"Evaporated particles :" <<G4endl;
416       G4cout <<"----------------------" <<G4en    350       G4cout <<"----------------------" <<G4endl;
417     }                                             351     }
418     std::size_t ie = 0;                        << 352     G4int ie = 0;
419     for (auto iter = fragmentVector->cbegin(); << 353     G4FragmentVector::iterator iter;
420               iter != fragmentVector->cend();  << 354     for (iter = fragmentVector->begin(); iter != fragmentVector->end(); ++iter)
421     {                                             355     {
422       if (ie == nEvap)                            356       if (ie == nEvap)
423       {                                           357       {
424 //        G4cout <<*iter  <<G4endl;            << 358         G4cout <<*iter  <<G4endl;
425         G4cout <<"----------------------------    359         G4cout <<"---------------------------------" <<G4endl;
426         G4cout <<"Particles from default emiss    360         G4cout <<"Particles from default emission :" <<G4endl;
427         G4cout <<"----------------------------    361         G4cout <<"---------------------------------" <<G4endl;
428       }                                           362       }
429       G4cout <<*iter <<G4endl;                    363       G4cout <<*iter <<G4endl;
430     }                                             364     }
431     G4cout <<"oooooooooooooooooooooooooooooooo    365     G4cout <<"oooooooooooooooooooooooooooooooooooooooo"
432            <<"oooooooooooooooooooooooooooooooo    366            <<"oooooooooooooooooooooooooooooooooooooooo"
433            <<G4endl;                              367            <<G4endl;
434   }                                               368   }
435                                                   369 
436   return fragmentVector;                          370   return fragmentVector;    
437 }                                                 371 }
438 //////////////////////////////////////////////    372 ////////////////////////////////////////////////////////////////////////////////
439 //                                                373 //
440 void G4WilsonAblationModel::SelectSecondariesB    374 void G4WilsonAblationModel::SelectSecondariesByEvaporation
441   (G4Fragment *intermediateNucleus)               375   (G4Fragment *intermediateNucleus)
442 {                                                 376 {
443   G4Fragment theResidualNucleus = *intermediat << 
444   G4bool evaporate = true;                        377   G4bool evaporate = true;
445   // Loop checking, 05-Aug-2015, Vladimir Ivan << 
446   while (evaporate && evapType.size() != 0)       378   while (evaporate && evapType.size() != 0)
447   {                                               379   {
448 //                                                380 //
449 //                                                381 //
450 // Here's the cheaky bit.  We're hijacking the    382 // Here's the cheaky bit.  We're hijacking the G4Evaporation model, in order to
451 // more accurately sample to kinematics, but t    383 // more accurately sample to kinematics, but the species of the nuclear
452 // fragments will be the ones of our choosing     384 // fragments will be the ones of our choosing as above.
453 //                                                385 //
454     std::vector <G4VEvaporationChannel*>  theC << 386     std::vector <G4VEvaporationChannel*>  theChannels;
455     theChannels1.clear();                      << 387     theChannels.clear();
456     std::vector <G4VEvaporationChannel*>::iter << 
457     VectorOfFragmentTypes::iterator iter;         388     VectorOfFragmentTypes::iterator iter;
458     std::vector <VectorOfFragmentTypes::iterat    389     std::vector <VectorOfFragmentTypes::iterator> iters;
459     iters.clear();                                390     iters.clear();
460     iter = std::find(evapType.begin(), evapTyp    391     iter = std::find(evapType.begin(), evapType.end(), G4Alpha::Alpha());
461     if (iter != evapType.end())                   392     if (iter != evapType.end())
462     {                                             393     {
463       theChannels1.push_back(new G4AlphaEvapor << 394       theChannels.push_back(new G4AlphaEvaporationChannel);
464       i = theChannels1.end() - 1;              << 
465       (*i)->SetOPTxs(OPTxs);                   << 
466       (*i)->UseSICB(useSICB);                  << 
467 //      (*i)->Initialize(theResidualNucleus);  << 
468       iters.push_back(iter);                      395       iters.push_back(iter);
469     }                                             396     }
470     iter = std::find(evapType.begin(), evapTyp    397     iter = std::find(evapType.begin(), evapType.end(), G4He3::He3());
471     if (iter != evapType.end())                   398     if (iter != evapType.end())
472     {                                             399     {
473       theChannels1.push_back(new G4He3Evaporat << 400       theChannels.push_back(new G4He3EvaporationChannel);
474       i = theChannels1.end() - 1;              << 
475       (*i)->SetOPTxs(OPTxs);                   << 
476       (*i)->UseSICB(useSICB);                  << 
477 //      (*i)->Initialize(theResidualNucleus);  << 
478       iters.push_back(iter);                      401       iters.push_back(iter);
479     }                                             402     }
480     iter = std::find(evapType.begin(), evapTyp    403     iter = std::find(evapType.begin(), evapType.end(), G4Triton::Triton());
481     if (iter != evapType.end())                   404     if (iter != evapType.end())
482     {                                             405     {
483       theChannels1.push_back(new G4TritonEvapo << 406       theChannels.push_back(new G4TritonEvaporationChannel);
484       i = theChannels1.end() - 1;              << 
485       (*i)->SetOPTxs(OPTxs);                   << 
486       (*i)->UseSICB(useSICB);                  << 
487 //      (*i)->Initialize(theResidualNucleus);  << 
488       iters.push_back(iter);                      407       iters.push_back(iter);
489     }                                             408     }
490     iter = std::find(evapType.begin(), evapTyp    409     iter = std::find(evapType.begin(), evapType.end(), G4Deuteron::Deuteron());
491     if (iter != evapType.end())                   410     if (iter != evapType.end())
492     {                                             411     {
493       theChannels1.push_back(new G4DeuteronEva << 412       theChannels.push_back(new G4DeuteronEvaporationChannel);
494       i = theChannels1.end() - 1;              << 
495       (*i)->SetOPTxs(OPTxs);                   << 
496       (*i)->UseSICB(useSICB);                  << 
497 //      (*i)->Initialize(theResidualNucleus);  << 
498       iters.push_back(iter);                      413       iters.push_back(iter);
499     }                                             414     }
500     iter = std::find(evapType.begin(), evapTyp    415     iter = std::find(evapType.begin(), evapType.end(), G4Proton::Proton());
501     if (iter != evapType.end())                   416     if (iter != evapType.end())
502     {                                             417     {
503       theChannels1.push_back(new G4ProtonEvapo << 418       theChannels.push_back(new G4ProtonEvaporationChannel);
504       i = theChannels1.end() - 1;              << 
505       (*i)->SetOPTxs(OPTxs);                   << 
506       (*i)->UseSICB(useSICB);                  << 
507 //      (*i)->Initialize(theResidualNucleus);  << 
508       iters.push_back(iter);                      419       iters.push_back(iter);
509     }                                             420     }
510     iter = std::find(evapType.begin(), evapTyp    421     iter = std::find(evapType.begin(), evapType.end(), G4Neutron::Neutron());
511     if (iter != evapType.end())                   422     if (iter != evapType.end())
512     {                                             423     {
513       theChannels1.push_back(new G4NeutronEvap << 424       theChannels.push_back(new G4NeutronEvaporationChannel);
514       i = theChannels1.end() - 1;              << 
515       (*i)->SetOPTxs(OPTxs);                   << 
516       (*i)->UseSICB(useSICB);                  << 
517 //      (*i)->Initialize(theResidualNucleus);  << 
518       iters.push_back(iter);                      425       iters.push_back(iter);
519     }                                             426     }
520     std::size_t nChannels = theChannels1.size( << 427     G4int nChannels = theChannels.size();
521                                                   428 
522     G4double totalProb = 0.0;                  << 429     std::vector<G4VEvaporationChannel*>::iterator iterEv;
523     G4int ich = 0;                             << 430     for (iterEv=theChannels.begin(); iterEv!=theChannels.end(); iterEv++)
524     G4double probEvapType[6] = {0.0};          << 431       (*iterEv)->Initialize(*intermediateNucleus);
525     for (auto iterEv=theChannels1.cbegin();    << 432     G4double totalProb = std::accumulate(theChannels.begin(),
526               iterEv!=theChannels1.cend(); ++i << 433       theChannels.end(), 0.0, SumProbabilities());
527       totalProb += (*iterEv)->GetEmissionProba << 434     if (totalProb > 0.0)
528       probEvapType[ich] = totalProb;           << 435     {
529       ++ich;                                   << 
530     }                                          << 
531     if (totalProb > 0.0) {                     << 
532 //                                                436 //
533 //                                                437 //
534 // The emission probability for at least one o    438 // The emission probability for at least one of the evaporation channels is
535 // positive, therefore work out which one shou    439 // positive, therefore work out which one should be selected and decay
536 // the nucleus.                                   440 // the nucleus.
537 //                                                441 //
538       G4double xi = totalProb*G4UniformRand(); << 442       G4double totalProb1      = 0.0;
539       std::size_t ii = 0;                      << 443       G4double probEvapType[6] = {0.0};
540       for (ii=0; ii<nChannels; ++ii)           << 444       for (G4int ich=0; ich<nChannels; ich++)
541       {                                           445       {
542         if (xi < probEvapType[ii]) { break; }  << 446         totalProb1      += theChannels[ich]->GetEmissionProbability();
543       }                                        << 447         probEvapType[ich]  = totalProb1 / totalProb;
544       if (ii >= nChannels) { ii = nChannels -  << 
545       G4FragmentVector *evaporationResult = th << 
546         BreakUpFragment(intermediateNucleus);  << 
547       if ((*evaporationResult)[0] != nullptr)  << 
548       {                                        << 
549         (*evaporationResult)[0]->SetCreatorMod << 
550       }                                           448       }
                                                   >> 449       G4double xi = G4UniformRand();
                                                   >> 450       G4int i     = 0;
                                                   >> 451       for (i=0; i<nChannels; i++)
                                                   >> 452         if (xi < probEvapType[i]) break;
                                                   >> 453       if (i > nChannels) i = nChannels - 1;
                                                   >> 454       G4FragmentVector *evaporationResult = theChannels[i]->
                                                   >> 455         BreakUp(*intermediateNucleus);
551       fragmentVector->push_back((*evaporationR    456       fragmentVector->push_back((*evaporationResult)[0]);
552       intermediateNucleus = (*evaporationResul << 457       *intermediateNucleus = *(*evaporationResult)[1];
                                                   >> 458       delete evaporationResult->back();
553       delete evaporationResult;                   459       delete evaporationResult;
                                                   >> 460       evapType.erase(iters[i]);
554     }                                             461     }
555     else                                          462     else
556     {                                             463     {
557 //                                                464 //
558 //                                                465 //
559 // Probability for further evaporation is nil     466 // Probability for further evaporation is nil so have to escape from this
560 // routine and set the energies of the seconda    467 // routine and set the energies of the secondaries to 10eV.
561 //                                                468 //
562       evaporate = false;                          469       evaporate = false;
563     }                                             470     }
564   }                                               471   }
565                                                   472   
566   return;                                         473   return;
567 }                                                 474 }
568 //////////////////////////////////////////////    475 ////////////////////////////////////////////////////////////////////////////////
569 //                                                476 //
570 void G4WilsonAblationModel::SelectSecondariesB    477 void G4WilsonAblationModel::SelectSecondariesByDefault (G4ThreeVector boost)
571 {                                                 478 {
572   for (std::size_t i=0; i<evapType.size(); ++i << 479   for (unsigned i=0; i<evapType.size(); i++)
573   {                                               480   {
574     G4ParticleDefinition *type = evapType[i];  << 481     G4ParticleDefinition *type = fragType[i];
575     G4double mass              = type->GetPDGM    482     G4double mass              = type->GetPDGMass();
576     G4double e                 = mass + 10.0*e    483     G4double e                 = mass + 10.0*eV;
577     G4double p                 = std::sqrt(e*e    484     G4double p                 = std::sqrt(e*e-mass*mass);
578     G4double costheta          = 2.0*G4Uniform    485     G4double costheta          = 2.0*G4UniformRand() - 1.0;
579     G4double sintheta          = std::sqrt((1.    486     G4double sintheta          = std::sqrt((1.0 - costheta)*(1.0 + costheta));
580     G4double phi               = twopi * G4Uni    487     G4double phi               = twopi * G4UniformRand() * rad;
581     G4ThreeVector direction(sintheta*std::cos(    488     G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
582     G4LorentzVector lorentzVector = G4LorentzV    489     G4LorentzVector lorentzVector = G4LorentzVector(direction*p, e);
583     lorentzVector.boost(-boost);                  490     lorentzVector.boost(-boost);
584 // Possibility that the following line is not  << 
585 // from particle definition.  Force values.  P << 
586 //    G4Fragment *fragment          =          << 
587 //      new G4Fragment(lorentzVector, type);   << 
588     G4int A = type->GetBaryonNumber();         << 
589     G4int Z = (G4int) (type->GetPDGCharge() +  << 
590     G4Fragment *fragment          =               491     G4Fragment *fragment          = 
591       new G4Fragment(A, Z, lorentzVector);     << 492       new G4Fragment(lorentzVector, type);
592     if (fragment != nullptr) { fragment->SetCr << 
593     fragmentVector->push_back(fragment);          493     fragmentVector->push_back(fragment);
594   }                                               494   }
595 }                                                 495 }
596 //////////////////////////////////////////////    496 ////////////////////////////////////////////////////////////////////////////////
597 //                                                497 //
598 void G4WilsonAblationModel::PrintWelcomeMessag    498 void G4WilsonAblationModel::PrintWelcomeMessage ()
599 {                                                 499 {
600   G4cout <<G4endl;                                500   G4cout <<G4endl;
601   G4cout <<" *********************************    501   G4cout <<" *****************************************************************"
602          <<G4endl;                                502          <<G4endl;
603   G4cout <<" Nuclear ablation model for nuclea    503   G4cout <<" Nuclear ablation model for nuclear-nuclear interactions activated"
604          <<G4endl;                                504          <<G4endl;
605   G4cout <<" (Written by QinetiQ Ltd for the E    505   G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
606          <<G4endl;                             << 
607   G4cout <<" !!! WARNING: This model is not we << 
608          <<G4endl;                                506          <<G4endl;
609   G4cout <<" *********************************    507   G4cout <<" *****************************************************************"
610          <<G4endl;                                508          <<G4endl;
611   G4cout << G4endl;                               509   G4cout << G4endl;
612                                                   510 
613   return;                                         511   return;
614 }                                                 512 }
615 //////////////////////////////////////////////    513 ////////////////////////////////////////////////////////////////////////////////
616 //                                                514 //
617                                                   515