Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * 18 // * * 21 // * Parts of this code which have been devel 19 // * Parts of this code which have been developed by QinetiQ Ltd * 22 // * under contract to the European Space Agen << 20 // * under contract to the European Space Agency (ESA) are the * 23 // * intellectual property of ESA. Rights to u 21 // * intellectual property of ESA. Rights to use, copy, modify and * 24 // * redistribute this software for general pu 22 // * redistribute this software for general public use are granted * 25 // * in compliance with any licensing, distrib 23 // * in compliance with any licensing, distribution and development * 26 // * policy adopted by the Geant4 Collaboratio 24 // * policy adopted by the Geant4 Collaboration. This code has been * 27 // * written by QinetiQ Ltd for the European S 25 // * written by QinetiQ Ltd for the European Space Agency, under ESA * 28 // * contract 17191/03/NL/LvH (Aurora Programm << 26 // * contract 17191/03/NL/LvH (Aurora Programme). * 29 // * 27 // * * 30 // * By using, copying, modifying or distri << 28 // * By copying, distributing or modifying the Program (or any work * 31 // * any work based on the software) you ag << 29 // * based on the Program) you indicate your acceptance of this * 32 // * use in resulting scientific publicati << 30 // * statement, and all its terms. * 33 // * acceptance of all terms of the Geant4 Sof << 34 // ******************************************* 31 // ******************************************************************** 35 // 32 // 36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 33 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 37 // 34 // 38 // MODULE: G4WilsonAblationModel. 35 // MODULE: G4WilsonAblationModel.cc 39 // 36 // 40 // Version: 1.0 << 37 // Version: B.1 41 // Date: 08/12/2009 << 38 // Date: 15/04/04 42 // Author: P R Truscott 39 // Author: P R Truscott 43 // Organisation: QinetiQ Ltd, UK 40 // Organisation: QinetiQ Ltd, UK 44 // Customer: ESA/ESTEC, NOORDWIJK 41 // Customer: ESA/ESTEC, NOORDWIJK 45 // Contract: 17191/03/NL/LvH 42 // Contract: 17191/03/NL/LvH 46 // 43 // 47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 44 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 48 // 45 // 49 // CHANGE HISTORY 46 // CHANGE HISTORY 50 // -------------- 47 // -------------- 51 // 48 // 52 // 6 October 2003, P R Truscott, QinetiQ Ltd, 49 // 6 October 2003, P R Truscott, QinetiQ Ltd, UK 53 // Created. 50 // Created. 54 // 51 // 55 // 15 March 2004, P R Truscott, QinetiQ Ltd, U 52 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK 56 // Beta release 53 // Beta release 57 // 54 // 58 // 08 December 2009, P R Truscott, QinetiQ Ltd << 59 // Ver 1.0 << 60 // Updated as a result of changes in the G4Eva << 61 // affect mostly SelectSecondariesByEvaporatio << 62 // associated with the evaporation model which << 63 // OPTxs to select the inverse cross-sectio << 64 // OPTxs = 0 => Dostrovski's parameter << 65 // OPTxs = 1 or 2 => Chatterjee's paramater << 66 // OPTxs = 3 or 4 => Kalbach's parameteriza << 67 // useSICB => use superimposed Coulo << 68 // sections << 69 // Other problem found with G4Fragment definit << 70 // **G4ParticleDefinition**. This does not al << 71 // fragment for some reason. Now the fragment << 72 // G4Fragment *fragment = new G4Fragment(A, << 73 // to avoid this quirk. Bug found in SelectSe << 74 // equated to evapType[i] whereas previously i << 75 // << 76 // 06 August 2015, A. Ribon, CERN << 77 // Migrated std::exp and std::pow to the faste << 78 // << 79 // 09 June 2017, C. Mancini Terracciano, INFN << 80 // Fixed bug on the initialization of Photon E << 81 // << 82 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 55 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 83 ////////////////////////////////////////////// 56 //////////////////////////////////////////////////////////////////////////////// 84 // 57 // 85 #include <iomanip> << 86 #include <numeric> << 87 << 88 #include "G4WilsonAblationModel.hh" 58 #include "G4WilsonAblationModel.hh" 89 #include "G4PhysicalConstants.hh" << 90 #include "G4SystemOfUnits.hh" << 91 #include "Randomize.hh" 59 #include "Randomize.hh" 92 #include "G4ParticleTable.hh" 60 #include "G4ParticleTable.hh" 93 #include "G4IonTable.hh" 61 #include "G4IonTable.hh" 94 #include "G4Alpha.hh" 62 #include "G4Alpha.hh" 95 #include "G4He3.hh" 63 #include "G4He3.hh" 96 #include "G4Triton.hh" 64 #include "G4Triton.hh" 97 #include "G4Deuteron.hh" 65 #include "G4Deuteron.hh" 98 #include "G4Proton.hh" 66 #include "G4Proton.hh" 99 #include "G4Neutron.hh" 67 #include "G4Neutron.hh" 100 #include "G4AlphaEvaporationChannel.hh" 68 #include "G4AlphaEvaporationChannel.hh" 101 #include "G4He3EvaporationChannel.hh" 69 #include "G4He3EvaporationChannel.hh" 102 #include "G4TritonEvaporationChannel.hh" 70 #include "G4TritonEvaporationChannel.hh" 103 #include "G4DeuteronEvaporationChannel.hh" 71 #include "G4DeuteronEvaporationChannel.hh" 104 #include "G4ProtonEvaporationChannel.hh" 72 #include "G4ProtonEvaporationChannel.hh" 105 #include "G4NeutronEvaporationChannel.hh" 73 #include "G4NeutronEvaporationChannel.hh" 106 #include "G4PhotonEvaporation.hh" << 107 #include "G4LorentzVector.hh" 74 #include "G4LorentzVector.hh" 108 #include "G4VEvaporationChannel.hh" 75 #include "G4VEvaporationChannel.hh" 109 76 110 #include "G4Exp.hh" << 77 #include <iomanip> 111 #include "G4Pow.hh" << 78 #include <numeric> 112 << 113 #include "G4PhysicsModelCatalog.hh" << 114 << 115 ////////////////////////////////////////////// 79 //////////////////////////////////////////////////////////////////////////////// 116 // 80 // 117 G4WilsonAblationModel::G4WilsonAblationModel() 81 G4WilsonAblationModel::G4WilsonAblationModel() 118 { 82 { 119 // 83 // 120 // 84 // 121 // Send message to stdout to advise that the G 85 // Send message to stdout to advise that the G4Abrasion model is being used. 122 // 86 // 123 PrintWelcomeMessage(); 87 PrintWelcomeMessage(); 124 // 88 // 125 // 89 // 126 // Set the default verbose level to 0 - no out 90 // Set the default verbose level to 0 - no output. 127 // 91 // 128 verboseLevel = 0; 92 verboseLevel = 0; 129 // 93 // 130 // 94 // 131 // Set the binding energy per nucleon .... did 95 // Set the binding energy per nucleon .... did I mention that this is a crude 132 // model for nuclear de-excitation? 96 // model for nuclear de-excitation? 133 // 97 // 134 B = 10.0 * MeV; 98 B = 10.0 * MeV; 135 // 99 // 136 // 100 // 137 // It is possuble to switch off secondary part 101 // It is possuble to switch off secondary particle production (other than the 138 // final nuclear fragment). The default is on 102 // final nuclear fragment). The default is on. 139 // 103 // 140 produceSecondaries = true; 104 produceSecondaries = true; 141 // 105 // 142 // 106 // 143 // Now we need to define the decay modes. We' 107 // Now we need to define the decay modes. We're using the G4Evaporation model 144 // to help determine the kinematics of the dec 108 // to help determine the kinematics of the decay. 145 // 109 // 146 nFragTypes = 6; 110 nFragTypes = 6; 147 fragType[0] = G4Alpha::Alpha(); 111 fragType[0] = G4Alpha::Alpha(); 148 fragType[1] = G4He3::He3(); 112 fragType[1] = G4He3::He3(); 149 fragType[2] = G4Triton::Triton(); 113 fragType[2] = G4Triton::Triton(); 150 fragType[3] = G4Deuteron::Deuteron(); 114 fragType[3] = G4Deuteron::Deuteron(); 151 fragType[4] = G4Proton::Proton(); 115 fragType[4] = G4Proton::Proton(); 152 fragType[5] = G4Neutron::Neutron(); 116 fragType[5] = G4Neutron::Neutron(); 153 for(G4int i=0; i<200; ++i) { fSig[i] = 0.0; << 154 // 117 // 155 // 118 // 156 // Set verboseLevel default to no output. 119 // Set verboseLevel default to no output. 157 // 120 // 158 verboseLevel = 0; 121 verboseLevel = 0; 159 theChannelFactory = new G4EvaporationFactory << 160 theChannels = theChannelFactory->GetChannel( << 161 // << 162 // << 163 // Set defaults for evaporation classes. Thes << 164 // "set" methods. << 165 // << 166 OPTxs = 3; << 167 useSICB = false; << 168 fragmentVector = 0; << 169 << 170 secID = G4PhysicsModelCatalog::GetModelID("m << 171 } 122 } 172 ////////////////////////////////////////////// 123 //////////////////////////////////////////////////////////////////////////////// 173 // 124 // 174 G4WilsonAblationModel::~G4WilsonAblationModel( 125 G4WilsonAblationModel::~G4WilsonAblationModel() 175 {} << 126 {;} 176 << 177 ////////////////////////////////////////////// 127 //////////////////////////////////////////////////////////////////////////////// 178 // 128 // 179 G4FragmentVector *G4WilsonAblationModel::Break 129 G4FragmentVector *G4WilsonAblationModel::BreakItUp 180 (const G4Fragment &theNucleus) 130 (const G4Fragment &theNucleus) 181 { 131 { 182 // 132 // 183 // 133 // 184 // Initilise the pointer to the G4FragmentVect 134 // Initilise the pointer to the G4FragmentVector used to return the information 185 // about the breakup. 135 // about the breakup. 186 // 136 // 187 fragmentVector = new G4FragmentVector; 137 fragmentVector = new G4FragmentVector; 188 fragmentVector->clear(); 138 fragmentVector->clear(); 189 // 139 // 190 // 140 // 191 // Get the A, Z and excitation of the nucleus. 141 // Get the A, Z and excitation of the nucleus. 192 // 142 // 193 G4int A = theNucleus.GetA_asInt(); << 143 G4int A = (G4int) theNucleus.GetA(); 194 G4int Z = theNucleus.GetZ_asInt(); << 144 G4int Z = (G4int) theNucleus.GetZ(); 195 G4double ex = theNucleus.GetExcitationEnergy 145 G4double ex = theNucleus.GetExcitationEnergy(); 196 if (verboseLevel >= 2) 146 if (verboseLevel >= 2) 197 { 147 { 198 G4cout <<"oooooooooooooooooooooooooooooooo 148 G4cout <<"oooooooooooooooooooooooooooooooooooooooo" 199 <<"oooooooooooooooooooooooooooooooo 149 <<"oooooooooooooooooooooooooooooooooooooooo" 200 <<G4endl; 150 <<G4endl; 201 G4cout.precision(6); 151 G4cout.precision(6); 202 G4cout <<"IN G4WilsonAblationModel" <<G4en 152 G4cout <<"IN G4WilsonAblationModel" <<G4endl; 203 G4cout <<"Initial prefragment A=" <<A 153 G4cout <<"Initial prefragment A=" <<A 204 <<", Z=" <<Z 154 <<", Z=" <<Z 205 <<", excitation energy = " <<ex/MeV 155 <<", excitation energy = " <<ex/MeV <<" MeV" 206 <<G4endl; 156 <<G4endl; 207 } 157 } 208 // 158 // 209 // 159 // 210 // Check that there is a nucleus to speak of. 160 // Check that there is a nucleus to speak of. It's possible there isn't one 211 // or its just a proton or neutron. In either 161 // or its just a proton or neutron. In either case, the excitation energy 212 // (from the Lorentz vector) is not used. 162 // (from the Lorentz vector) is not used. 213 // 163 // 214 if (A == 0) 164 if (A == 0) 215 { 165 { 216 if (verboseLevel >= 2) 166 if (verboseLevel >= 2) 217 { 167 { 218 G4cout <<"No nucleus to decay" <<G4endl; 168 G4cout <<"No nucleus to decay" <<G4endl; 219 G4cout <<"oooooooooooooooooooooooooooooo 169 G4cout <<"oooooooooooooooooooooooooooooooooooooooo" 220 <<"oooooooooooooooooooooooooooooo 170 <<"oooooooooooooooooooooooooooooooooooooooo" 221 <<G4endl; 171 <<G4endl; 222 } 172 } 223 return fragmentVector; 173 return fragmentVector; 224 } 174 } 225 else if (A == 1) 175 else if (A == 1) 226 { 176 { 227 G4LorentzVector lorentzVector = theNucleus 177 G4LorentzVector lorentzVector = theNucleus.GetMomentum(); 228 lorentzVector.setE(lorentzVector.e()-ex+10 178 lorentzVector.setE(lorentzVector.e()-ex+10.0*eV); 229 if (Z == 0) 179 if (Z == 0) 230 { 180 { 231 G4Fragment *fragment = new G4Fragment(lo 181 G4Fragment *fragment = new G4Fragment(lorentzVector,G4Neutron::Neutron()); 232 if (fragment != nullptr) { fragment->Set << 233 fragmentVector->push_back(fragment); 182 fragmentVector->push_back(fragment); 234 } 183 } 235 else 184 else 236 { 185 { 237 G4Fragment *fragment = new G4Fragment(lo 186 G4Fragment *fragment = new G4Fragment(lorentzVector,G4Proton::Proton()); 238 if (fragment != nullptr) { fragment->Set << 239 fragmentVector->push_back(fragment); 187 fragmentVector->push_back(fragment); 240 } 188 } 241 if (verboseLevel >= 2) 189 if (verboseLevel >= 2) 242 { 190 { 243 G4cout <<"Final fragment is in fact only 191 G4cout <<"Final fragment is in fact only a nucleon) :" <<G4endl; 244 G4cout <<(*fragmentVector)[0] <<G4endl; 192 G4cout <<(*fragmentVector)[0] <<G4endl; 245 G4cout <<"oooooooooooooooooooooooooooooo 193 G4cout <<"oooooooooooooooooooooooooooooooooooooooo" 246 <<"oooooooooooooooooooooooooooooo 194 <<"oooooooooooooooooooooooooooooooooooooooo" 247 <<G4endl; 195 <<G4endl; 248 } 196 } 249 return fragmentVector; 197 return fragmentVector; 250 } 198 } 251 // 199 // 252 // 200 // 253 // Then the number of nucleons ablated (either 201 // Then the number of nucleons ablated (either as nucleons or light nuclear 254 // fragments) is based on a simple argument fo 202 // fragments) is based on a simple argument for the binding energy per nucleon. 255 // 203 // 256 G4int DAabl = (G4int) (ex / B); 204 G4int DAabl = (G4int) (ex / B); 257 if (DAabl > A) DAabl = A; 205 if (DAabl > A) DAabl = A; 258 // The following lines are no longer accurate << 206 if (verboseLevel >= 2) 259 // if (verboseLevel >= 2) << 207 G4cout <<"Number of nucleons ejected = " <<DAabl <<G4endl; 260 // G4cout <<"Number of nucleons ejected = " << 261 208 262 // 209 // 263 // 210 // 264 // Determine the nuclear fragment from the abl 211 // Determine the nuclear fragment from the ablation process by sampling the 265 // Rudstam equation. 212 // Rudstam equation. 266 // 213 // 267 G4int AF = A - DAabl; 214 G4int AF = A - DAabl; 268 G4int ZF = 0; 215 G4int ZF = 0; 269 << 270 if (AF > 0) 216 if (AF > 0) 271 { 217 { 272 G4Pow* g4calc = G4Pow::GetInstance(); << 218 G4double AFd = static_cast<G4double>(AF); 273 G4double AFd = (G4double) AF; << 219 G4double R = 11.8 / pow(AFd, 0.45); 274 G4double R = 11.8 / g4calc->powZ(AF, 0.45) << 220 G4int minZ = Z - DAabl; 275 G4int minZ = std::max(1, Z - DAabl); << 221 if (minZ <= 0) minZ = 1; 276 // 222 // 277 // 223 // 278 // Here we define an integral probability dist 224 // Here we define an integral probability distribution based on the Rudstam 279 // equation assuming a constant AF. 225 // equation assuming a constant AF. 280 // 226 // 281 G4int zmax = std::min(199, Z); << 227 G4double sig[100]; 282 G4double sum = 0.0; 228 G4double sum = 0.0; 283 for (ZF=minZ; ZF<=zmax; ++ZF) << 229 for (G4int ii=minZ; ii<= Z; ii++) 284 { 230 { 285 sum += G4Exp(-R*g4calc->powA(std::abs(ZF << 231 sum += exp(-R*pow(abs(ii - 0.486*AFd + 3.8E-04*AFd*AFd),1.5)); 286 fSig[ZF] = sum; << 232 sig[ii] = sum; 287 } 233 } 288 // 234 // 289 // 235 // 290 // Now sample that distribution to determine a 236 // Now sample that distribution to determine a value for ZF. 291 // 237 // 292 sum *= G4UniformRand(); << 238 G4double xi = G4UniformRand(); 293 for (ZF=minZ; ZF<=zmax; ++ZF) { << 239 G4int iz = minZ; 294 if(sum <= fSig[ZF]) { break; } << 240 G4bool found = false; 295 } << 241 while (iz <= Z && !found) >> 242 { >> 243 found = (xi <= sig[iz]/sum); >> 244 if (!found) iz++; >> 245 } >> 246 if (iz > Z) >> 247 ZF = Z; >> 248 else >> 249 ZF = iz; 296 } 250 } 297 G4int DZabl = Z - ZF; 251 G4int DZabl = Z - ZF; >> 252 if (verboseLevel >= 2) >> 253 G4cout <<"Final fragment A=" <<AF >> 254 <<", Z=" <<ZF >> 255 <<G4endl; 298 // 256 // 299 // 257 // 300 // Now determine the nucleons or nuclei which 258 // Now determine the nucleons or nuclei which have bee ablated. The preference 301 // is for the production of alphas, then other 259 // is for the production of alphas, then other nuclei in order of decreasing 302 // binding energy. The energies assigned to th 260 // binding energy. The energies assigned to the products of the decay are 303 // provisional for the moment (the 10eV is jus 261 // provisional for the moment (the 10eV is just to avoid errors with negative 304 // excitation energies due to rounding). 262 // excitation energies due to rounding). 305 // 263 // 306 G4double totalEpost = 0.0; 264 G4double totalEpost = 0.0; 307 evapType.clear(); 265 evapType.clear(); 308 for (G4int ift=0; ift<nFragTypes; ift++) 266 for (G4int ift=0; ift<nFragTypes; ift++) 309 { 267 { 310 G4ParticleDefinition *type = fragType[ift] 268 G4ParticleDefinition *type = fragType[ift]; 311 G4double n = std::floor((G4double) DAabl << 269 G4double n = floor((G4double) DAabl / type->GetBaryonNumber() + 1.0E-10); 312 G4double n1 = 1.0E+10; 270 G4double n1 = 1.0E+10; 313 if (fragType[ift]->GetPDGCharge() > 0.0) 271 if (fragType[ift]->GetPDGCharge() > 0.0) 314 n1 = std::floor((G4double) DZabl / type- << 272 n1 = floor((G4double) DZabl / type->GetPDGCharge() + 1.0E-10); 315 if (n > n1) n = n1; 273 if (n > n1) n = n1; 316 if (n > 0.0) 274 if (n > 0.0) 317 { 275 { 318 G4double mass = type->GetPDGMass(); 276 G4double mass = type->GetPDGMass(); 319 for (G4int j=0; j<(G4int) n; j++) 277 for (G4int j=0; j<(G4int) n; j++) 320 { 278 { 321 totalEpost += mass; 279 totalEpost += mass; 322 evapType.push_back(type); 280 evapType.push_back(type); 323 } 281 } 324 DAabl -= (G4int) (n * type->GetBaryonNum 282 DAabl -= (G4int) (n * type->GetBaryonNumber() + 1.0E-10); 325 DZabl -= (G4int) (n * type->GetPDGCharge 283 DZabl -= (G4int) (n * type->GetPDGCharge() + 1.0E-10); >> 284 if (verboseLevel >= 2) >> 285 G4cout <<"Particle type: " <<std::setw(10) <<type->GetParticleName() >> 286 <<", number of particles emitted = " <<n >> 287 <<G4endl; 326 } 288 } 327 } 289 } 328 // 290 // 329 // 291 // 330 // Determine the properties of the final nucle << 292 // Determine the properties of the final nuclear fragment. 331 // the final fragment is predicted to have a n << 332 // really it's the particle last in the vector << 333 // final fragment. Therefore delete this from << 334 // case. << 335 // 293 // 336 G4double massFinalFrag = 0.0; 294 G4double massFinalFrag = 0.0; 337 if (AF > 0) << 295 if (AF > 0.0) 338 massFinalFrag = G4ParticleTable::GetPartic 296 massFinalFrag = G4ParticleTable::GetParticleTable()->GetIonTable()-> 339 GetIonMass(ZF,AF); 297 GetIonMass(ZF,AF); 340 else << 341 { << 342 G4ParticleDefinition *type = evapType[evap << 343 AF = type->GetBary << 344 ZF = (G4int) (type << 345 evapType.erase(evapType.end()-1); << 346 } << 347 totalEpost += massFinalFrag; 298 totalEpost += massFinalFrag; 348 // 299 // 349 // 300 // 350 // Provide verbose output on the nuclear fragm << 351 // << 352 if (verboseLevel >= 2) << 353 { << 354 G4cout <<"Final fragment A=" <<AF << 355 <<", Z=" <<ZF << 356 <<G4endl; << 357 for (G4int ift=0; ift<nFragTypes; ift++) << 358 { << 359 G4ParticleDefinition *type = fragType[if << 360 G4long n = std::count(evapType.cbegin(), << 361 if (n > 0) << 362 G4cout <<"Particle type: " <<std::setw << 363 <<", number of particles emitte << 364 } << 365 } << 366 // << 367 // Add the total energy from the fragment. No 301 // Add the total energy from the fragment. Note that the fragment is assumed 368 // to be de-excited and does not undergo photo 302 // to be de-excited and does not undergo photo-evaporation .... I did mention 369 // this is a bit of a crude model? 303 // this is a bit of a crude model? 370 // 304 // 371 G4double massPreFrag = theNucleus.GetGr 305 G4double massPreFrag = theNucleus.GetGroundStateMass(); 372 G4double totalEpre = massPreFrag + ex 306 G4double totalEpre = massPreFrag + ex; 373 G4double excess = totalEpre - tota 307 G4double excess = totalEpre - totalEpost; 374 // G4Fragment *resultNucleus(theNucleus); 308 // G4Fragment *resultNucleus(theNucleus); 375 G4Fragment *resultNucleus = new G4Fragment(A 309 G4Fragment *resultNucleus = new G4Fragment(A, Z, theNucleus.GetMomentum()); 376 G4ThreeVector boost(0.0,0.0,0.0); 310 G4ThreeVector boost(0.0,0.0,0.0); 377 std::size_t nEvap = 0; << 311 G4int nEvap = 0; 378 if (produceSecondaries && evapType.size()>0) 312 if (produceSecondaries && evapType.size()>0) 379 { 313 { 380 if (excess > 0.0) 314 if (excess > 0.0) 381 { 315 { 382 SelectSecondariesByEvaporation (resultNu 316 SelectSecondariesByEvaporation (resultNucleus); 383 nEvap = fragmentVector->size(); 317 nEvap = fragmentVector->size(); 384 boost = resultNucleus->GetMomentum().fin 318 boost = resultNucleus->GetMomentum().findBoostToCM(); 385 if (evapType.size() > 0) 319 if (evapType.size() > 0) 386 SelectSecondariesByDefault (boost); 320 SelectSecondariesByDefault (boost); 387 } 321 } 388 else 322 else 389 SelectSecondariesByDefault(G4ThreeVector 323 SelectSecondariesByDefault(G4ThreeVector(0.0,0.0,0.0)); 390 } 324 } 391 << 392 if (AF > 0) 325 if (AF > 0) 393 { 326 { 394 G4double mass = G4ParticleTable::GetPartic 327 G4double mass = G4ParticleTable::GetParticleTable()->GetIonTable()-> 395 GetIonMass(ZF,AF); 328 GetIonMass(ZF,AF); 396 G4double e = mass + 10.0*eV; 329 G4double e = mass + 10.0*eV; 397 G4double p = std::sqrt(e*e-mass*mass); << 330 G4double p = sqrt(e*e-mass*mass); 398 G4ThreeVector direction(0.0,0.0,1.0); 331 G4ThreeVector direction(0.0,0.0,1.0); 399 G4LorentzVector lorentzVector = G4LorentzV 332 G4LorentzVector lorentzVector = G4LorentzVector(direction*p, e); 400 lorentzVector.boost(-boost); 333 lorentzVector.boost(-boost); 401 G4Fragment* frag = new G4Fragment(AF, ZF, << 334 *resultNucleus = G4Fragment(AF, ZF, lorentzVector); 402 if (frag != nullptr) { frag->SetCreatorMod << 335 fragmentVector->push_back(resultNucleus); 403 fragmentVector->push_back(frag); << 404 } 336 } 405 delete resultNucleus; << 406 // 337 // 407 // 338 // 408 // Provide verbose output on the ablation prod 339 // Provide verbose output on the ablation products if requested. 409 // 340 // 410 if (verboseLevel >= 2) 341 if (verboseLevel >= 2) 411 { 342 { 412 if (nEvap > 0) 343 if (nEvap > 0) 413 { 344 { 414 G4cout <<"----------------------" <<G4en 345 G4cout <<"----------------------" <<G4endl; 415 G4cout <<"Evaporated particles :" <<G4en 346 G4cout <<"Evaporated particles :" <<G4endl; 416 G4cout <<"----------------------" <<G4en 347 G4cout <<"----------------------" <<G4endl; 417 } 348 } 418 std::size_t ie = 0; << 349 G4int ie = 0; 419 for (auto iter = fragmentVector->cbegin(); << 350 G4FragmentVector::iterator iter; 420 iter != fragmentVector->cend(); << 351 for (iter = fragmentVector->begin(); iter != fragmentVector->end(); ++iter) 421 { 352 { 422 if (ie == nEvap) 353 if (ie == nEvap) 423 { 354 { 424 // G4cout <<*iter <<G4endl; << 355 G4cout <<*iter <<G4endl; 425 G4cout <<"---------------------------- 356 G4cout <<"---------------------------------" <<G4endl; 426 G4cout <<"Particles from default emiss 357 G4cout <<"Particles from default emission :" <<G4endl; 427 G4cout <<"---------------------------- 358 G4cout <<"---------------------------------" <<G4endl; 428 } 359 } 429 G4cout <<*iter <<G4endl; 360 G4cout <<*iter <<G4endl; 430 } 361 } 431 G4cout <<"oooooooooooooooooooooooooooooooo 362 G4cout <<"oooooooooooooooooooooooooooooooooooooooo" 432 <<"oooooooooooooooooooooooooooooooo 363 <<"oooooooooooooooooooooooooooooooooooooooo" 433 <<G4endl; 364 <<G4endl; 434 } 365 } 435 366 436 return fragmentVector; 367 return fragmentVector; 437 } 368 } 438 ////////////////////////////////////////////// 369 //////////////////////////////////////////////////////////////////////////////// 439 // 370 // 440 void G4WilsonAblationModel::SelectSecondariesB 371 void G4WilsonAblationModel::SelectSecondariesByEvaporation 441 (G4Fragment *intermediateNucleus) 372 (G4Fragment *intermediateNucleus) 442 { 373 { 443 G4Fragment theResidualNucleus = *intermediat << 444 G4bool evaporate = true; 374 G4bool evaporate = true; 445 // Loop checking, 05-Aug-2015, Vladimir Ivan << 446 while (evaporate && evapType.size() != 0) 375 while (evaporate && evapType.size() != 0) 447 { 376 { 448 // 377 // 449 // 378 // 450 // Here's the cheaky bit. We're hijacking the 379 // Here's the cheaky bit. We're hijacking the G4Evaporation model, in order to 451 // more accurately sample to kinematics, but t 380 // more accurately sample to kinematics, but the species of the nuclear 452 // fragments will be the ones of our choosing 381 // fragments will be the ones of our choosing as above. 453 // 382 // 454 std::vector <G4VEvaporationChannel*> theC << 383 std::vector <G4VEvaporationChannel*> theChannels; 455 theChannels1.clear(); << 384 theChannels.clear(); 456 std::vector <G4VEvaporationChannel*>::iter << 457 VectorOfFragmentTypes::iterator iter; 385 VectorOfFragmentTypes::iterator iter; 458 std::vector <VectorOfFragmentTypes::iterat 386 std::vector <VectorOfFragmentTypes::iterator> iters; 459 iters.clear(); 387 iters.clear(); 460 iter = std::find(evapType.begin(), evapTyp 388 iter = std::find(evapType.begin(), evapType.end(), G4Alpha::Alpha()); 461 if (iter != evapType.end()) 389 if (iter != evapType.end()) 462 { 390 { 463 theChannels1.push_back(new G4AlphaEvapor << 391 theChannels.push_back(new G4AlphaEvaporationChannel); 464 i = theChannels1.end() - 1; << 465 (*i)->SetOPTxs(OPTxs); << 466 (*i)->UseSICB(useSICB); << 467 // (*i)->Initialize(theResidualNucleus); << 468 iters.push_back(iter); 392 iters.push_back(iter); 469 } 393 } 470 iter = std::find(evapType.begin(), evapTyp 394 iter = std::find(evapType.begin(), evapType.end(), G4He3::He3()); 471 if (iter != evapType.end()) 395 if (iter != evapType.end()) 472 { 396 { 473 theChannels1.push_back(new G4He3Evaporat << 397 theChannels.push_back(new G4He3EvaporationChannel); 474 i = theChannels1.end() - 1; << 475 (*i)->SetOPTxs(OPTxs); << 476 (*i)->UseSICB(useSICB); << 477 // (*i)->Initialize(theResidualNucleus); << 478 iters.push_back(iter); 398 iters.push_back(iter); 479 } 399 } 480 iter = std::find(evapType.begin(), evapTyp 400 iter = std::find(evapType.begin(), evapType.end(), G4Triton::Triton()); 481 if (iter != evapType.end()) 401 if (iter != evapType.end()) 482 { 402 { 483 theChannels1.push_back(new G4TritonEvapo << 403 theChannels.push_back(new G4TritonEvaporationChannel); 484 i = theChannels1.end() - 1; << 485 (*i)->SetOPTxs(OPTxs); << 486 (*i)->UseSICB(useSICB); << 487 // (*i)->Initialize(theResidualNucleus); << 488 iters.push_back(iter); 404 iters.push_back(iter); 489 } 405 } 490 iter = std::find(evapType.begin(), evapTyp 406 iter = std::find(evapType.begin(), evapType.end(), G4Deuteron::Deuteron()); 491 if (iter != evapType.end()) 407 if (iter != evapType.end()) 492 { 408 { 493 theChannels1.push_back(new G4DeuteronEva << 409 theChannels.push_back(new G4DeuteronEvaporationChannel); 494 i = theChannels1.end() - 1; << 495 (*i)->SetOPTxs(OPTxs); << 496 (*i)->UseSICB(useSICB); << 497 // (*i)->Initialize(theResidualNucleus); << 498 iters.push_back(iter); 410 iters.push_back(iter); 499 } 411 } 500 iter = std::find(evapType.begin(), evapTyp 412 iter = std::find(evapType.begin(), evapType.end(), G4Proton::Proton()); 501 if (iter != evapType.end()) 413 if (iter != evapType.end()) 502 { 414 { 503 theChannels1.push_back(new G4ProtonEvapo << 415 theChannels.push_back(new G4ProtonEvaporationChannel); 504 i = theChannels1.end() - 1; << 505 (*i)->SetOPTxs(OPTxs); << 506 (*i)->UseSICB(useSICB); << 507 // (*i)->Initialize(theResidualNucleus); << 508 iters.push_back(iter); 416 iters.push_back(iter); 509 } 417 } 510 iter = std::find(evapType.begin(), evapTyp 418 iter = std::find(evapType.begin(), evapType.end(), G4Neutron::Neutron()); 511 if (iter != evapType.end()) 419 if (iter != evapType.end()) 512 { 420 { 513 theChannels1.push_back(new G4NeutronEvap << 421 theChannels.push_back(new G4NeutronEvaporationChannel); 514 i = theChannels1.end() - 1; << 515 (*i)->SetOPTxs(OPTxs); << 516 (*i)->UseSICB(useSICB); << 517 // (*i)->Initialize(theResidualNucleus); << 518 iters.push_back(iter); 422 iters.push_back(iter); 519 } 423 } 520 std::size_t nChannels = theChannels1.size( << 424 G4int nChannels = theChannels.size(); 521 425 522 G4double totalProb = 0.0; << 426 std::vector<G4VEvaporationChannel*>::iterator iterEv; 523 G4int ich = 0; << 427 for (iterEv=theChannels.begin(); iterEv!=theChannels.end(); iterEv++) 524 G4double probEvapType[6] = {0.0}; << 428 (*iterEv)->Initialize(*intermediateNucleus); 525 for (auto iterEv=theChannels1.cbegin(); << 429 G4double totalProb = std::accumulate(theChannels.begin(), 526 iterEv!=theChannels1.cend(); ++i << 430 theChannels.end(), 0.0, SumProbabilities()); 527 totalProb += (*iterEv)->GetEmissionProba << 431 if (totalProb > 0.0) 528 probEvapType[ich] = totalProb; << 432 { 529 ++ich; << 530 } << 531 if (totalProb > 0.0) { << 532 // 433 // 533 // 434 // 534 // The emission probability for at least one o 435 // The emission probability for at least one of the evaporation channels is 535 // positive, therefore work out which one shou 436 // positive, therefore work out which one should be selected and decay 536 // the nucleus. 437 // the nucleus. 537 // 438 // 538 G4double xi = totalProb*G4UniformRand(); << 439 G4double totalProb1 = 0.0; 539 std::size_t ii = 0; << 440 G4double probEvapType[6] = {0.0}; 540 for (ii=0; ii<nChannels; ++ii) << 441 for (G4int ich=0; ich<nChannels; ich++) 541 { 442 { 542 if (xi < probEvapType[ii]) { break; } << 443 totalProb1 += theChannels[ich]->GetEmissionProbability(); 543 } << 444 probEvapType[ich] = totalProb1 / totalProb; 544 if (ii >= nChannels) { ii = nChannels - << 545 G4FragmentVector *evaporationResult = th << 546 BreakUpFragment(intermediateNucleus); << 547 if ((*evaporationResult)[0] != nullptr) << 548 { << 549 (*evaporationResult)[0]->SetCreatorMod << 550 } 445 } >> 446 G4double xi = G4UniformRand(); >> 447 G4int i = 0; >> 448 for (i=0; i<nChannels; i++) >> 449 if (xi < probEvapType[i]) break; >> 450 if (i > nChannels) i = nChannels - 1; >> 451 G4FragmentVector *evaporationResult = theChannels[i]-> >> 452 BreakUp(*intermediateNucleus); 551 fragmentVector->push_back((*evaporationR 453 fragmentVector->push_back((*evaporationResult)[0]); 552 intermediateNucleus = (*evaporationResul << 454 *intermediateNucleus = *(*evaporationResult)[1]; >> 455 delete evaporationResult->back(); 553 delete evaporationResult; 456 delete evaporationResult; >> 457 evapType.erase(iters[i]); 554 } 458 } 555 else 459 else 556 { 460 { 557 // 461 // 558 // 462 // 559 // Probability for further evaporation is nil 463 // Probability for further evaporation is nil so have to escape from this 560 // routine and set the energies of the seconda 464 // routine and set the energies of the secondaries to 10eV. 561 // 465 // 562 evaporate = false; 466 evaporate = false; 563 } 467 } 564 } 468 } 565 469 566 return; 470 return; 567 } 471 } 568 ////////////////////////////////////////////// 472 //////////////////////////////////////////////////////////////////////////////// 569 // 473 // 570 void G4WilsonAblationModel::SelectSecondariesB 474 void G4WilsonAblationModel::SelectSecondariesByDefault (G4ThreeVector boost) 571 { 475 { 572 for (std::size_t i=0; i<evapType.size(); ++i << 476 for (unsigned i=0; i<evapType.size(); i++) 573 { 477 { 574 G4ParticleDefinition *type = evapType[i]; << 478 G4ParticleDefinition *type = fragType[i]; 575 G4double mass = type->GetPDGM 479 G4double mass = type->GetPDGMass(); 576 G4double e = mass + 10.0*e 480 G4double e = mass + 10.0*eV; 577 G4double p = std::sqrt(e*e << 481 G4double p = sqrt(e*e-mass*mass); 578 G4double costheta = 2.0*G4Uniform 482 G4double costheta = 2.0*G4UniformRand() - 1.0; 579 G4double sintheta = std::sqrt((1. << 483 G4double sintheta = sqrt((1.0 - costheta)*(1.0 + costheta)); 580 G4double phi = twopi * G4Uni 484 G4double phi = twopi * G4UniformRand() * rad; 581 G4ThreeVector direction(sintheta*std::cos( << 485 G4ThreeVector direction(sintheta*cos(phi),sintheta*sin(phi),costheta); 582 G4LorentzVector lorentzVector = G4LorentzV 486 G4LorentzVector lorentzVector = G4LorentzVector(direction*p, e); 583 lorentzVector.boost(-boost); 487 lorentzVector.boost(-boost); 584 // Possibility that the following line is not << 585 // from particle definition. Force values. P << 586 // G4Fragment *fragment = << 587 // new G4Fragment(lorentzVector, type); << 588 G4int A = type->GetBaryonNumber(); << 589 G4int Z = (G4int) (type->GetPDGCharge() + << 590 G4Fragment *fragment = 488 G4Fragment *fragment = 591 new G4Fragment(A, Z, lorentzVector); << 489 new G4Fragment(lorentzVector, type); 592 if (fragment != nullptr) { fragment->SetCr << 593 fragmentVector->push_back(fragment); 490 fragmentVector->push_back(fragment); 594 } 491 } 595 } 492 } 596 ////////////////////////////////////////////// 493 //////////////////////////////////////////////////////////////////////////////// 597 // 494 // 598 void G4WilsonAblationModel::PrintWelcomeMessag 495 void G4WilsonAblationModel::PrintWelcomeMessage () 599 { 496 { 600 G4cout <<G4endl; 497 G4cout <<G4endl; 601 G4cout <<" ********************************* 498 G4cout <<" *****************************************************************" 602 <<G4endl; 499 <<G4endl; 603 G4cout <<" Nuclear ablation model for nuclea 500 G4cout <<" Nuclear ablation model for nuclear-nuclear interactions activated" 604 <<G4endl; 501 <<G4endl; 605 G4cout <<" (Written by QinetiQ Ltd for the E 502 G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)" 606 <<G4endl; << 607 G4cout <<" !!! WARNING: This model is not we << 608 <<G4endl; 503 <<G4endl; 609 G4cout <<" ********************************* 504 G4cout <<" *****************************************************************" 610 <<G4endl; 505 <<G4endl; 611 G4cout << G4endl; 506 G4cout << G4endl; 612 507 613 return; 508 return; 614 } 509 } 615 ////////////////////////////////////////////// 510 //////////////////////////////////////////////////////////////////////////////// 616 // 511 // 617 512