Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/coherent_elastic/src/G4LEpp.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/coherent_elastic/src/G4LEpp.cc (Version 11.3.0) and /processes/hadronic/models/coherent_elastic/src/G4LEpp.cc (Version 11.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26                                                    26 
 27  // G4 Low energy model: n-n or p-p scattering     27  // G4 Low energy model: n-n or p-p scattering
 28  // F.W. Jones, L.G. Greeniaus, H.P. Wellisch      28  // F.W. Jones, L.G. Greeniaus, H.P. Wellisch
 29                                                    29 
 30 // FWJ 27-AUG-2010: extended Coulomb-suppresse     30 // FWJ 27-AUG-2010: extended Coulomb-suppressed data to 5 GeV
 31                                                    31 
 32 #include "G4LEpp.hh"                               32 #include "G4LEpp.hh"
 33 #include "G4PhysicalConstants.hh"                  33 #include "G4PhysicalConstants.hh"
 34 #include "G4SystemOfUnits.hh"                      34 #include "G4SystemOfUnits.hh"
 35 #include "Randomize.hh"                            35 #include "Randomize.hh"
 36 #include "G4ios.hh"                                36 #include "G4ios.hh"
 37                                                    37 
 38 // Initialization of static data arrays:           38 // Initialization of static data arrays:
 39 #include "G4LEppData.hh"                           39 #include "G4LEppData.hh"
 40                                                    40 
 41 #include "G4PhysicsModelCatalog.hh"                41 #include "G4PhysicsModelCatalog.hh"
 42                                                    42 
 43                                                    43 
 44 G4LEpp::G4LEpp():G4HadronElastic("G4LEpp")         44 G4LEpp::G4LEpp():G4HadronElastic("G4LEpp")
 45 {                                                  45 {
 46   secID = G4PhysicsModelCatalog::GetModelID( "     46   secID = G4PhysicsModelCatalog::GetModelID( "model_" + GetModelName() );  
 47   SetMinEnergy(0.);                                47   SetMinEnergy(0.);
 48   SetMaxEnergy(5.*GeV);                            48   SetMaxEnergy(5.*GeV);
 49 }                                                  49 }
 50                                                    50 
 51 G4LEpp::~G4LEpp()                                  51 G4LEpp::~G4LEpp()
 52 {}                                                 52 {}
 53                                                    53 
 54 G4HadFinalState*                                   54 G4HadFinalState*
 55 G4LEpp::ApplyYourself(const G4HadProjectile& a     55 G4LEpp::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
 56 {                                                  56 {
 57     theParticleChange.Clear();                     57     theParticleChange.Clear();
 58     const G4HadProjectile* aParticle = &aTrack     58     const G4HadProjectile* aParticle = &aTrack;
 59                                                    59 
 60     G4double P = aParticle->GetTotalMomentum()     60     G4double P = aParticle->GetTotalMomentum();
 61     G4double Px = aParticle->Get4Momentum().x(     61     G4double Px = aParticle->Get4Momentum().x();
 62     G4double Py = aParticle->Get4Momentum().y(     62     G4double Py = aParticle->Get4Momentum().y();
 63     G4double Pz = aParticle->Get4Momentum().z(     63     G4double Pz = aParticle->Get4Momentum().z();
 64     G4double E  = aParticle->GetTotalEnergy();     64     G4double E  = aParticle->GetTotalEnergy();
 65     G4ThreeVector theInitial = aParticle->Get4     65     G4ThreeVector theInitial = aParticle->Get4Momentum().vect().unit();
 66                                                    66 
 67     if (verboseLevel > 1) {                        67     if (verboseLevel > 1) {
 68       G4double ek = aParticle->GetKineticEnerg     68       G4double ek = aParticle->GetKineticEnergy();
 69       G4double E0 = aParticle->GetDefinition()     69       G4double E0 = aParticle->GetDefinition()->GetPDGMass();
 70       G4double Q = aParticle->GetDefinition()-     70       G4double Q = aParticle->GetDefinition()->GetPDGCharge();
 71       G4int A = targetNucleus.GetA_asInt();        71       G4int A = targetNucleus.GetA_asInt();
 72       G4int Z = targetNucleus.GetZ_asInt();        72       G4int Z = targetNucleus.GetZ_asInt();
 73       G4cout << "G4LEpp:ApplyYourself: inciden     73       G4cout << "G4LEpp:ApplyYourself: incident particle: "
 74              << aParticle->GetDefinition()->Ge     74              << aParticle->GetDefinition()->GetParticleName() << G4endl;
 75       G4cout << "P = " << P/GeV << " GeV/c"        75       G4cout << "P = " << P/GeV << " GeV/c"
 76              << ", Px = " << Px/GeV << " GeV/c     76              << ", Px = " << Px/GeV << " GeV/c"
 77              << ", Py = " << Py/GeV << " GeV/c     77              << ", Py = " << Py/GeV << " GeV/c"
 78              << ", Pz = " << Pz/GeV << " GeV/c     78              << ", Pz = " << Pz/GeV << " GeV/c" << G4endl;
 79       G4cout << "E = " << E/GeV << " GeV"          79       G4cout << "E = " << E/GeV << " GeV"
 80              << ", kinetic energy = " << ek/Ge     80              << ", kinetic energy = " << ek/GeV << " GeV"
 81              << ", mass = " << E0/GeV << " GeV     81              << ", mass = " << E0/GeV << " GeV"
 82              << ", charge = " << Q << G4endl;      82              << ", charge = " << Q << G4endl;
 83       G4cout << "G4LEpp:ApplyYourself: materia     83       G4cout << "G4LEpp:ApplyYourself: material:" << G4endl;
 84       G4cout << "A = " << A                        84       G4cout << "A = " << A
 85              << ", Z = " << Z                      85              << ", Z = " << Z
 86              << ", atomic mass "                   86              << ", atomic mass " 
 87              <<  G4Proton::Proton()->GetPDGMas     87              <<  G4Proton::Proton()->GetPDGMass()/GeV << "GeV" 
 88              << G4endl;                            88              << G4endl;
 89       //                                           89       //
 90       // GHEISHA ADD operation to get total en     90       // GHEISHA ADD operation to get total energy, mass, charge
 91       //                                           91       //
 92       E += proton_mass_c2;                         92       E += proton_mass_c2;
 93       G4double E02 = E*E - P*P;                    93       G4double E02 = E*E - P*P;
 94       E0 = std::sqrt(std::fabs(E02));              94       E0 = std::sqrt(std::fabs(E02));
 95       if (E02 < 0)E0 *= -1;                        95       if (E02 < 0)E0 *= -1;
 96       Q += Z;                                      96       Q += Z;
 97       G4cout << "G4LEpp:ApplyYourself: total:"     97       G4cout << "G4LEpp:ApplyYourself: total:" << G4endl;
 98       G4cout << "E = " << E/GeV << " GeV"          98       G4cout << "E = " << E/GeV << " GeV"
 99              << ", mass = " << E0/GeV << " GeV     99              << ", mass = " << E0/GeV << " GeV"
100              << ", charge = " << Q << G4endl;     100              << ", charge = " << Q << G4endl;
101     }                                             101     }
102     G4double t = SampleInvariantT(aParticle->G    102     G4double t = SampleInvariantT(aParticle->GetDefinition(), P, 0, 0);
103     G4double cost = 1.0 - 2*t/(P*P);              103     G4double cost = 1.0 - 2*t/(P*P);
104     if(cost > 1.0) { cost = 1.0; }                104     if(cost > 1.0) { cost = 1.0; }
105     if(cost <-1.0) { cost =-1.0; }                105     if(cost <-1.0) { cost =-1.0; }
106     G4double sint = std::sqrt((1.0 - cost)*(1.    106     G4double sint = std::sqrt((1.0 - cost)*(1.0 + cost));
107     G4double phi = twopi*G4UniformRand();         107     G4double phi = twopi*G4UniformRand();
108     // Get the target particle                    108     // Get the target particle
109     G4DynamicParticle* targetParticle = target    109     G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle();
110                                                   110 
111     G4double E1 = aParticle->GetTotalEnergy();    111     G4double E1 = aParticle->GetTotalEnergy();
112     G4double M1 = aParticle->GetDefinition()->    112     G4double M1 = aParticle->GetDefinition()->GetPDGMass();
113     G4double E2 = targetParticle->GetTotalEner    113     G4double E2 = targetParticle->GetTotalEnergy();
114     G4double M2 = targetParticle->GetDefinitio    114     G4double M2 = targetParticle->GetDefinition()->GetPDGMass();
115     G4double totalEnergy = E1 + E2;               115     G4double totalEnergy = E1 + E2;
116     G4double pseudoMass = std::sqrt(totalEnerg    116     G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
117                                                   117 
118     // Transform into centre of mass system       118     // Transform into centre of mass system
119                                                   119 
120     G4double px = (M2/pseudoMass)*Px;             120     G4double px = (M2/pseudoMass)*Px;
121     G4double py = (M2/pseudoMass)*Py;             121     G4double py = (M2/pseudoMass)*Py;
122     G4double pz = (M2/pseudoMass)*Pz;             122     G4double pz = (M2/pseudoMass)*Pz;
123     G4double p = std::sqrt(px*px + py*py + pz*    123     G4double p = std::sqrt(px*px + py*py + pz*pz);
124                                                   124 
125     if (verboseLevel > 1) {                       125     if (verboseLevel > 1) {
126       G4cout << "  E1, M1 (GeV) " << E1/GeV <<    126       G4cout << "  E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl;
127       G4cout << "  E2, M2 (GeV) " << E2/GeV <<    127       G4cout << "  E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl;
128       G4cout << "  particle  1 momentum in CM     128       G4cout << "  particle  1 momentum in CM " << px/GeV 
129        << " " << py/GeV << " "                    129        << " " << py/GeV << " "
130        << pz/GeV << " " << p/GeV << G4endl;       130        << pz/GeV << " " << p/GeV << G4endl;
131     }                                             131     }
132                                                   132 
133     // First scatter w.r.t. Z axis                133     // First scatter w.r.t. Z axis
134     G4double pxnew = p*sint*std::cos(phi);        134     G4double pxnew = p*sint*std::cos(phi);
135     G4double pynew = p*sint*std::sin(phi);        135     G4double pynew = p*sint*std::sin(phi);
136     G4double pznew = p*cost;                      136     G4double pznew = p*cost;
137                                                   137 
138     // Rotate according to the direction of th    138     // Rotate according to the direction of the incident particle
139     if (px*px + py*py > 0) {                      139     if (px*px + py*py > 0) {
140       G4double ph, cosp, sinp;                    140       G4double ph, cosp, sinp;
141       cost = pz/p;                                141       cost = pz/p;
142       sint = (std::sqrt((1-cost)*(1+cost)) + s    142       sint = (std::sqrt((1-cost)*(1+cost)) + std::sqrt(px*px+py*py)/p)/2;
143       py < 0 ? ph = 3*halfpi : ph = halfpi;       143       py < 0 ? ph = 3*halfpi : ph = halfpi;
144       if (std::fabs(px) > 0.000001*GeV) ph = s    144       if (std::fabs(px) > 0.000001*GeV) ph = std::atan2(py,px);
145       cosp = std::cos(ph);                        145       cosp = std::cos(ph);
146       sinp = std::sin(ph);                        146       sinp = std::sin(ph);
147       px = (cost*cosp*pxnew - sinp*pynew + sin    147       px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
148       py = (cost*sinp*pxnew + cosp*pynew + sin    148       py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
149       pz = (-sint*pxnew                  + cos    149       pz = (-sint*pxnew                  + cost*pznew);
150     }                                             150     }
151     else {                                        151     else {
152       px = pxnew;                                 152       px = pxnew;
153       py = pynew;                                 153       py = pynew;
154       pz = pznew;                                 154       pz = pznew;
155     }                                             155     }
156                                                   156 
157     if (verboseLevel > 1) {                       157     if (verboseLevel > 1) {
158       G4cout << "  AFTER SCATTER..." << G4endl    158       G4cout << "  AFTER SCATTER..." << G4endl;
159       G4cout << "  particle 1 momentum in CM "    159       G4cout << "  particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
160            << pz/GeV << " " << p/GeV << G4endl    160            << pz/GeV << " " << p/GeV << G4endl;
161     }                                             161     }
162                                                   162 
163     // Transform to lab system                    163     // Transform to lab system
164                                                   164 
165     G4double E1pM2 = E1 + M2;                     165     G4double E1pM2 = E1 + M2;
166     G4double betaCM  = P/E1pM2;                   166     G4double betaCM  = P/E1pM2;
167     G4double betaCMx = Px/E1pM2;                  167     G4double betaCMx = Px/E1pM2;
168     G4double betaCMy = Py/E1pM2;                  168     G4double betaCMy = Py/E1pM2;
169     G4double betaCMz = Pz/E1pM2;                  169     G4double betaCMz = Pz/E1pM2;
170     G4double gammaCM = E1pM2/std::sqrt(E1pM2*E    170     G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
171                                                   171 
172     if (verboseLevel > 1) {                       172     if (verboseLevel > 1) {
173       G4cout << "  betaCM " << betaCMx << " "     173       G4cout << "  betaCM " << betaCMx << " " << betaCMy << " "
174              << betaCMz << " " << betaCM << G4    174              << betaCMz << " " << betaCM << G4endl;
175       G4cout << "  gammaCM " << gammaCM << G4e    175       G4cout << "  gammaCM " << gammaCM << G4endl;
176     }                                             176     }
177                                                   177 
178     // Now following GLOREN...                    178     // Now following GLOREN...
179                                                   179 
180     G4double BETA[5], PA[5], PB[5];               180     G4double BETA[5], PA[5], PB[5];
181     BETA[1] = -betaCMx;                           181     BETA[1] = -betaCMx;
182     BETA[2] = -betaCMy;                           182     BETA[2] = -betaCMy;
183     BETA[3] = -betaCMz;                           183     BETA[3] = -betaCMz;
184     BETA[4] = gammaCM;                            184     BETA[4] = gammaCM;
185                                                   185 
186     //The incident particle...                    186     //The incident particle...
187                                                   187 
188     PA[1] = px;                                   188     PA[1] = px;
189     PA[2] = py;                                   189     PA[2] = py;
190     PA[3] = pz;                                   190     PA[3] = pz;
191     PA[4] = std::sqrt(M1*M1 + p*p);               191     PA[4] = std::sqrt(M1*M1 + p*p);
192                                                   192 
193     G4double BETPA  = BETA[1]*PA[1] + BETA[2]*    193     G4double BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
194     G4double BPGAM  = (BETPA * BETA[4]/(BETA[4    194     G4double BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
195                                                   195 
196     PB[1] = PA[1] + BPGAM  * BETA[1];             196     PB[1] = PA[1] + BPGAM  * BETA[1];
197     PB[2] = PA[2] + BPGAM  * BETA[2];             197     PB[2] = PA[2] + BPGAM  * BETA[2];
198     PB[3] = PA[3] + BPGAM  * BETA[3];             198     PB[3] = PA[3] + BPGAM  * BETA[3];
199     PB[4] = (PA[4] - BETPA) * BETA[4];            199     PB[4] = (PA[4] - BETPA) * BETA[4];
200                                                   200 
201     G4DynamicParticle* newP = new G4DynamicPar    201     G4DynamicParticle* newP = new G4DynamicParticle;
202     newP->SetDefinition(aParticle->GetDefiniti    202     newP->SetDefinition(aParticle->GetDefinition());
203     newP->SetMomentum(G4ThreeVector(PB[1], PB[    203     newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
204                                                   204 
205     //The target particle...                      205     //The target particle...
206                                                   206 
207     PA[1] = -px;                                  207     PA[1] = -px;
208     PA[2] = -py;                                  208     PA[2] = -py;
209     PA[3] = -pz;                                  209     PA[3] = -pz;
210     PA[4] = std::sqrt(M2*M2 + p*p);               210     PA[4] = std::sqrt(M2*M2 + p*p);
211                                                   211 
212     BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + B    212     BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
213     BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) -    213     BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
214                                                   214 
215     PB[1] = PA[1] + BPGAM  * BETA[1];             215     PB[1] = PA[1] + BPGAM  * BETA[1];
216     PB[2] = PA[2] + BPGAM  * BETA[2];             216     PB[2] = PA[2] + BPGAM  * BETA[2];
217     PB[3] = PA[3] + BPGAM  * BETA[3];             217     PB[3] = PA[3] + BPGAM  * BETA[3];
218     PB[4] = (PA[4] - BETPA) * BETA[4];            218     PB[4] = (PA[4] - BETPA) * BETA[4];
219                                                   219 
220     targetParticle->SetMomentum(G4ThreeVector(    220     targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
221                                                   221 
222     if (verboseLevel > 1) {                       222     if (verboseLevel > 1) {
223       G4cout << "  particle 1 momentum in LAB     223       G4cout << "  particle 1 momentum in LAB " 
224            << newP->GetMomentum()/GeV             224            << newP->GetMomentum()/GeV 
225            << " " << newP->GetTotalMomentum()/    225            << " " << newP->GetTotalMomentum()/GeV << G4endl;
226       G4cout << "  particle 2 momentum in LAB     226       G4cout << "  particle 2 momentum in LAB " 
227            << targetParticle->GetMomentum()/Ge    227            << targetParticle->GetMomentum()/GeV 
228            << " " << targetParticle->GetTotalM    228            << " " << targetParticle->GetTotalMomentum()/GeV << G4endl;
229       G4cout << "  TOTAL momentum in LAB "        229       G4cout << "  TOTAL momentum in LAB " 
230            << (newP->GetMomentum()+targetParti    230            << (newP->GetMomentum()+targetParticle->GetMomentum())/GeV 
231            << " "                                 231            << " " 
232            << (newP->GetMomentum()+targetParti    232            << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV
233            << G4endl;                             233            << G4endl;
234     }                                             234     }
235                                                   235 
236     theParticleChange.SetMomentumChange( newP-    236     theParticleChange.SetMomentumChange( newP->GetMomentumDirection());
237     theParticleChange.SetEnergyChange(newP->Ge    237     theParticleChange.SetEnergyChange(newP->GetKineticEnergy());
238     delete newP;                                  238     delete newP;
239                                                   239 
240     // Recoil particle                            240     // Recoil particle
241     theParticleChange.AddSecondary(targetParti    241     theParticleChange.AddSecondary(targetParticle, secID);    
242     return &theParticleChange;                    242     return &theParticleChange;
243 }                                                 243 }
244                                                   244 
245 //////////////////////////////////////////////    245 ////////////////////////////////////////////////////////////////////
246 //                                                246 //
247 // sample momentum transfer using Lab. momentu    247 // sample momentum transfer using Lab. momentum
248                                                   248 
249 G4double G4LEpp::SampleInvariantT(const G4Part    249 G4double G4LEpp::SampleInvariantT(const G4ParticleDefinition* p, 
250           G4double plab, G4int , G4int )          250           G4double plab, G4int , G4int )
251 {                                                 251 {
252   G4double nMass = p->GetPDGMass(); // 939.565    252   G4double nMass = p->GetPDGMass(); // 939.565346*MeV;
253   G4double ek = std::sqrt(plab*plab+nMass*nMas    253   G4double ek = std::sqrt(plab*plab+nMass*nMass) - nMass;
254                                                   254 
255     // Find energy bin                            255     // Find energy bin
256                                                   256 
257   G4int je1 = 0;                                  257   G4int je1 = 0;
258   G4int je2 = NENERGY - 1;                        258   G4int je2 = NENERGY - 1;
259   ek /= GeV;                                      259   ek /= GeV;
260                                                   260 
261   do                                              261   do 
262   {                                               262   {
263     G4int midBin = (je1 + je2)/2;                 263     G4int midBin = (je1 + je2)/2;
264                                                   264 
265     if (ek < elab[midBin]) je2 = midBin;          265     if (ek < elab[midBin]) je2 = midBin;
266     else                   je1 = midBin;          266     else                   je1 = midBin;
267   }                                               267   } 
268   while (je2 - je1 > 1);  /* Loop checking, 10    268   while (je2 - je1 > 1);  /* Loop checking, 10.08.2015, A.Ribon */
269                                                   269 
270   G4double delab = elab[je2] - elab[je1];         270   G4double delab = elab[je2] - elab[je1];
271                                                   271 
272     // Sample the angle                           272     // Sample the angle
273                                                   273 
274   G4double sample = G4UniformRand();              274   G4double sample = G4UniformRand();
275   G4int ke1 = 0;                                  275   G4int ke1 = 0;
276   G4int ke2 = NANGLE - 1;                         276   G4int ke2 = NANGLE - 1;
277   G4double dsig, b, rc;                           277   G4double dsig, b, rc;
278                                                   278 
279   dsig = Sig[je2][0] - Sig[je1][0];               279   dsig = Sig[je2][0] - Sig[je1][0]; 
280   rc = dsig/delab;                                280   rc = dsig/delab;
281   b = Sig[je1][0] - rc*elab[je1];                 281   b = Sig[je1][0] - rc*elab[je1];
282                                                   282 
283   G4double sigint1 = rc*ek + b;                   283   G4double sigint1 = rc*ek + b;
284   G4double sigint2 = 0.;                          284   G4double sigint2 = 0.;
285                                                   285 
286   do                                              286   do
287   {                                               287   {
288       G4int midBin = (ke1 + ke2)/2;               288       G4int midBin = (ke1 + ke2)/2;
289       dsig = Sig[je2][midBin] - Sig[je1][midBi    289       dsig = Sig[je2][midBin] - Sig[je1][midBin]; 
290       rc = dsig/delab;                            290       rc = dsig/delab;
291       b = Sig[je1][midBin] - rc*elab[je1];        291       b = Sig[je1][midBin] - rc*elab[je1];
292       G4double sigint = rc*ek + b;                292       G4double sigint = rc*ek + b;
293                                                   293 
294       if (sample < sigint)                        294       if (sample < sigint) 
295       {                                           295       {
296         ke2 = midBin;                             296         ke2 = midBin;
297         sigint2 = sigint;                         297         sigint2 = sigint;
298       }                                           298       }
299       else                                        299       else 
300       {                                           300       {
301         ke1 = midBin;                             301         ke1 = midBin;
302         sigint1 = sigint;                         302         sigint1 = sigint;
303       }                                           303       }
304   }                                               304   } 
305   while (ke2 - ke1 > 1);  /* Loop checking, 10    305   while (ke2 - ke1 > 1);  /* Loop checking, 10.08.2015, A.Ribon */ 
306                                                   306 
307   dsig = sigint2 - sigint1;                       307   dsig = sigint2 - sigint1;
308   rc = 1./dsig;                                   308   rc = 1./dsig;
309   b = ke1 - rc*sigint1;                           309   b = ke1 - rc*sigint1;
310                                                   310 
311   G4double kint = rc*sample + b;                  311   G4double kint = rc*sample + b;
312   G4double theta = (0.5 + kint)*pi/180.;          312   G4double theta = (0.5 + kint)*pi/180.;
313   G4double t = 0.5*plab*plab*(1 - std::cos(the    313   G4double t = 0.5*plab*plab*(1 - std::cos(theta));
314                                                   314 
315   return t;                                       315   return t;
316 }                                                 316 }
317 // end of file                                    317 // end of file
318                                                   318