Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/coherent_elastic/src/G4LEnp.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/coherent_elastic/src/G4LEnp.cc (Version 11.3.0) and /processes/hadronic/models/coherent_elastic/src/G4LEnp.cc (Version 9.3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26                                                    26 
 27 // G4 Low energy model: n-p scattering             27 // G4 Low energy model: n-p scattering
 28 // F.W. Jones, L.G. Greeniaus, H.P. Wellisch       28 // F.W. Jones, L.G. Greeniaus, H.P. Wellisch
 29                                                    29 
 30 // 11-OCT-2007 F.W. Jones: removed erroneous c     30 // 11-OCT-2007 F.W. Jones: removed erroneous code for identity
 31 //             exchange of particles.              31 //             exchange of particles.
 32 // FWJ 27-AUG-2010: extended to 5 GeV by Tony  << 
 33                                                    32 
 34 #include "G4LEnp.hh"                               33 #include "G4LEnp.hh"
 35 #include "G4PhysicalConstants.hh"              << 
 36 #include "G4SystemOfUnits.hh"                  << 
 37 #include "Randomize.hh"                            34 #include "Randomize.hh"
 38 #include "G4ios.hh"                                35 #include "G4ios.hh"
 39                                                    36 
 40 // Initialization of static data arrays:           37 // Initialization of static data arrays:
 41 #include "G4LEnpData.hh"                           38 #include "G4LEnpData.hh"
 42 #include "Randomize.hh"                            39 #include "Randomize.hh"
 43                                                    40 
 44 #include "G4PhysicsModelCatalog.hh"            << 
 45                                                    41 
 46                                                <<  42 G4LEnp::G4LEnp():G4HadronicInteraction("G4LEnp")
 47 G4LEnp::G4LEnp():                              << 
 48  G4HadronElastic("G4LEnp")  // G4HadronicInter << 
 49 {                                                  43 {
 50   secID = G4PhysicsModelCatalog::GetModelID( " << 
 51   //    theParticleChange.SetNumberOfSecondari     44   //    theParticleChange.SetNumberOfSecondaries(1);
 52                                                    45   
 53   //    SetMinEnergy(10.*MeV);                     46   //    SetMinEnergy(10.*MeV);
 54   //    SetMaxEnergy(1200.*MeV);                   47   //    SetMaxEnergy(1200.*MeV);
 55   SetMinEnergy(0.);                                48   SetMinEnergy(0.);
 56   SetMaxEnergy(5.*GeV);                        <<  49   SetMaxEnergy(1200.*GeV);
 57 }                                                  50 }
 58                                                    51 
 59 G4LEnp::~G4LEnp()                                  52 G4LEnp::~G4LEnp()
 60 {                                                  53 {
 61       theParticleChange.Clear();                   54       theParticleChange.Clear();
 62 }                                                  55 }
 63                                                    56 
 64 G4HadFinalState*                                   57 G4HadFinalState*
 65 G4LEnp::ApplyYourself(const G4HadProjectile& a     58 G4LEnp::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
 66 {                                                  59 {
 67     theParticleChange.Clear();                     60     theParticleChange.Clear();
 68     const G4HadProjectile* aParticle = &aTrack     61     const G4HadProjectile* aParticle = &aTrack;
 69                                                    62 
 70     G4double P = aParticle->GetTotalMomentum()     63     G4double P = aParticle->GetTotalMomentum();
 71     G4double Px = aParticle->Get4Momentum().x(     64     G4double Px = aParticle->Get4Momentum().x();
 72     G4double Py = aParticle->Get4Momentum().y(     65     G4double Py = aParticle->Get4Momentum().y();
 73     G4double Pz = aParticle->Get4Momentum().z(     66     G4double Pz = aParticle->Get4Momentum().z();
 74     G4double ek = aParticle->GetKineticEnergy(     67     G4double ek = aParticle->GetKineticEnergy();
 75     G4ThreeVector theInitial = aParticle->Get4     68     G4ThreeVector theInitial = aParticle->Get4Momentum().vect();
 76                                                    69 
 77     if (verboseLevel > 1) {                        70     if (verboseLevel > 1) {
 78       G4double E = aParticle->GetTotalEnergy()     71       G4double E = aParticle->GetTotalEnergy();
 79       G4double E0 = aParticle->GetDefinition()     72       G4double E0 = aParticle->GetDefinition()->GetPDGMass();
 80       G4double Q = aParticle->GetDefinition()-     73       G4double Q = aParticle->GetDefinition()->GetPDGCharge();
 81       G4int A = targetNucleus.GetA_asInt();    <<  74       G4double N = targetNucleus.GetN();
 82       G4int Z = targetNucleus.GetZ_asInt();    <<  75       G4double Z = targetNucleus.GetZ();
 83       G4cout << "G4LEnp:ApplyYourself: inciden     76       G4cout << "G4LEnp:ApplyYourself: incident particle: "
 84              << aParticle->GetDefinition()->Ge     77              << aParticle->GetDefinition()->GetParticleName() << G4endl;
 85       G4cout << "P = " << P/GeV << " GeV/c"        78       G4cout << "P = " << P/GeV << " GeV/c"
 86              << ", Px = " << Px/GeV << " GeV/c     79              << ", Px = " << Px/GeV << " GeV/c"
 87              << ", Py = " << Py/GeV << " GeV/c     80              << ", Py = " << Py/GeV << " GeV/c"
 88              << ", Pz = " << Pz/GeV << " GeV/c     81              << ", Pz = " << Pz/GeV << " GeV/c" << G4endl;
 89       G4cout << "E = " << E/GeV << " GeV"          82       G4cout << "E = " << E/GeV << " GeV"
 90              << ", kinetic energy = " << ek/Ge     83              << ", kinetic energy = " << ek/GeV << " GeV"
 91              << ", mass = " << E0/GeV << " GeV     84              << ", mass = " << E0/GeV << " GeV"
 92              << ", charge = " << Q << G4endl;      85              << ", charge = " << Q << G4endl;
 93       G4cout << "G4LEnp:ApplyYourself: materia     86       G4cout << "G4LEnp:ApplyYourself: material:" << G4endl;
 94       G4cout << "A = " << A                    <<  87       G4cout << "A = " << N
 95              << ", Z = " << Z                      88              << ", Z = " << Z
 96              << ", atomic mass "                   89              << ", atomic mass " 
 97              <<  G4Proton::Proton()->GetPDGMas     90              <<  G4Proton::Proton()->GetPDGMass()/GeV << "GeV" 
 98              << G4endl;                            91              << G4endl;
 99       //                                           92       //
100       // GHEISHA ADD operation to get total en     93       // GHEISHA ADD operation to get total energy, mass, charge
101       //                                           94       //
102       E += proton_mass_c2;                     <<  95       E += G4Proton::Proton()->GetPDGMass();
103       G4double E02 = E*E - P*P;                    96       G4double E02 = E*E - P*P;
104       E0 = std::sqrt(std::abs(E02));               97       E0 = std::sqrt(std::abs(E02));
105       if (E02 < 0)E0 *= -1;                        98       if (E02 < 0)E0 *= -1;
106       Q += Z;                                      99       Q += Z;
107       G4cout << "G4LEnp:ApplyYourself: total:"    100       G4cout << "G4LEnp:ApplyYourself: total:" << G4endl;
108       G4cout << "E = " << E/GeV << " GeV"         101       G4cout << "E = " << E/GeV << " GeV"
109              << ", mass = " << E0/GeV << " GeV    102              << ", mass = " << E0/GeV << " GeV"
110              << ", charge = " << Q << G4endl;     103              << ", charge = " << Q << G4endl;
111     }                                             104     }
112                                                   105 
113     // Find energy bin                            106     // Find energy bin
114                                                   107 
115     G4int je1 = 0;                                108     G4int je1 = 0;
116     G4int je2 = NENERGY - 1;                      109     G4int je2 = NENERGY - 1;
117     ek = ek/GeV;                                  110     ek = ek/GeV;
118     do {                                          111     do {
119       G4int midBin = (je1 + je2)/2;               112       G4int midBin = (je1 + je2)/2;
120       if (ek < elab[midBin])                      113       if (ek < elab[midBin])
121         je2 = midBin;                             114         je2 = midBin;
122       else                                        115       else
123         je1 = midBin;                             116         je1 = midBin;
124     } while (je2 - je1 > 1);  /* Loop checking << 117     } while (je2 - je1 > 1); 
                                                   >> 118     //    G4int j;
                                                   >> 119     //std::abs(ek-elab[je1]) < std::abs(ek-elab[je2]) ? j = je1 : j = je2;
125     G4double delab = elab[je2] - elab[je1];       120     G4double delab = elab[je2] - elab[je1];
126                                                   121 
127     // Sample the angle                           122     // Sample the angle
128                                                   123 
129     G4double sample = G4UniformRand();         << 124     G4float sample = G4UniformRand();
130     G4int ke1 = 0;                                125     G4int ke1 = 0;
131     G4int ke2 = NANGLE - 1;                       126     G4int ke2 = NANGLE - 1;
132     G4double dsig = sig[je2][0] - sig[je1][0];    127     G4double dsig = sig[je2][0] - sig[je1][0];
133     G4double rc = dsig/delab;                     128     G4double rc = dsig/delab;
134     G4double b = sig[je1][0] - rc*elab[je1];      129     G4double b = sig[je1][0] - rc*elab[je1];
135     G4double sigint1 = rc*ek + b;                 130     G4double sigint1 = rc*ek + b;
136     G4double sigint2 = 0.;                        131     G4double sigint2 = 0.;
137                                                   132 
138     if (verboseLevel > 1) {                    << 133     if (verboseLevel > 1) G4cout << "sample=" << sample << G4endl
139       G4cout << "sample=" << sample << G4endl  << 134                                  << ke1 << " " << ke2 << " " 
140        << ke1 << " " << ke2 << " "             << 135                                  << sigint1 << " " << sigint2 << G4endl;
141        << sigint1 << " " << sigint2 << G4endl; << 136 
142     }                                          << 
143     do {                                          137     do {
144       G4int midBin = (ke1 + ke2)/2;               138       G4int midBin = (ke1 + ke2)/2;
145       dsig = sig[je2][midBin] - sig[je1][midBi    139       dsig = sig[je2][midBin] - sig[je1][midBin];
146       rc = dsig/delab;                            140       rc = dsig/delab;
147       b = sig[je1][midBin] - rc*elab[je1];        141       b = sig[je1][midBin] - rc*elab[je1];
148       G4double sigint = rc*ek + b;                142       G4double sigint = rc*ek + b;
149       if (sample < sigint) {                      143       if (sample < sigint) {
150         ke2 = midBin;                             144         ke2 = midBin;
151         sigint2 = sigint;                         145         sigint2 = sigint;
152       }                                           146       }
153       else {                                      147       else {
154         ke1 = midBin;                             148         ke1 = midBin;
155         sigint1 = sigint;                         149         sigint1 = sigint;
156       }                                           150       }
157       if (verboseLevel > 1) {                  << 151       if (verboseLevel > 1)G4cout << ke1 << " " << ke2 << " " 
158   G4cout << ke1 << " " << ke2 << " "           << 152                                   << sigint1 << " " << sigint2 << G4endl;
159          << sigint1 << " " << sigint2 << G4end << 153     } while (ke2 - ke1 > 1); 
160       }                                        << 154 
161     } while (ke2 - ke1 > 1);  /* Loop checking << 155     // sigint1 and sigint2 should be recoverable from above loop
                                                   >> 156 
                                                   >> 157     //    G4double dsig = sig[je2][ke1] - sig[je1][ke1];
                                                   >> 158     //    G4double rc = dsig/delab;
                                                   >> 159     //    G4double b = sig[je1][ke1] - rc*elab[je1];
                                                   >> 160     //    G4double sigint1 = rc*ek + b;
                                                   >> 161 
                                                   >> 162     //    G4double dsig = sig[je2][ke2] - sig[je1][ke2];
                                                   >> 163     //    G4double rc = dsig/delab;
                                                   >> 164     //    G4double b = sig[je1][ke2] - rc*elab[je1];
                                                   >> 165     //    G4double sigint2 = rc*ek + b;
162                                                   166 
163     dsig = sigint2 - sigint1;                     167     dsig = sigint2 - sigint1;
164     rc = 1./dsig;                                 168     rc = 1./dsig;
165     b = ke1 - rc*sigint1;                         169     b = ke1 - rc*sigint1;
166     G4double kint = rc*sample + b;                170     G4double kint = rc*sample + b;
167     G4double theta = (0.5 + kint)*pi/180.;        171     G4double theta = (0.5 + kint)*pi/180.;
168                                                   172 
                                                   >> 173     //    G4int k;
                                                   >> 174     //std::abs(sample-sig[j][ke1]) < std::abs(sample-sig[j][ke2]) ? k = ke1 : k = ke2;
                                                   >> 175     //    G4double theta = (0.5 + k)*pi/180.;
                                                   >> 176 
169     if (verboseLevel > 1) {                       177     if (verboseLevel > 1) {
170       G4cout << "   energy bin " << je1 << " e    178       G4cout << "   energy bin " << je1 << " energy=" << elab[je1] << G4endl;
171       G4cout << "   angle bin " << kint << " a    179       G4cout << "   angle bin " << kint << " angle=" << theta/degree << G4endl;
172     }                                             180     }
173                                                   181 
                                                   >> 182 
174     // Get the target particle                    183     // Get the target particle
175                                                   184 
176     G4DynamicParticle* targetParticle = target    185     G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle();
177                                                   186 
178     G4double E1 = aParticle->GetTotalEnergy();    187     G4double E1 = aParticle->GetTotalEnergy();
179     G4double M1 = aParticle->GetDefinition()->    188     G4double M1 = aParticle->GetDefinition()->GetPDGMass();
180     G4double E2 = targetParticle->GetTotalEner    189     G4double E2 = targetParticle->GetTotalEnergy();
181     G4double M2 = targetParticle->GetDefinitio    190     G4double M2 = targetParticle->GetDefinition()->GetPDGMass();
182     G4double totalEnergy = E1 + E2;               191     G4double totalEnergy = E1 + E2;
183     G4double pseudoMass = std::sqrt(totalEnerg    192     G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
                                                   >> 193     // pseudoMass also = std::sqrt(M1*M1 + M2*M2 + 2*M2*E1)
184                                                   194 
185     // Transform into centre of mass system       195     // Transform into centre of mass system
186                                                   196 
187     G4double px = (M2/pseudoMass)*Px;             197     G4double px = (M2/pseudoMass)*Px;
188     G4double py = (M2/pseudoMass)*Py;             198     G4double py = (M2/pseudoMass)*Py;
189     G4double pz = (M2/pseudoMass)*Pz;             199     G4double pz = (M2/pseudoMass)*Pz;
190     G4double p = std::sqrt(px*px + py*py + pz*    200     G4double p = std::sqrt(px*px + py*py + pz*pz);
191                                                   201 
192     if (verboseLevel > 1) {                       202     if (verboseLevel > 1) {
193       G4cout << "  E1, M1 (GeV) " << E1/GeV <<    203       G4cout << "  E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl;
194       G4cout << "  E2, M2 (GeV) " << E2/GeV <<    204       G4cout << "  E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl;
195       G4cout << "  particle  1 momentum in CM     205       G4cout << "  particle  1 momentum in CM " << px/GeV << " " << py/GeV << " "
196            << pz/GeV << " " << p/GeV << G4endl    206            << pz/GeV << " " << p/GeV << G4endl;
197     }                                             207     }
198                                                   208 
199     // First scatter w.r.t. Z axis                209     // First scatter w.r.t. Z axis
200     G4double phi = G4UniformRand()*twopi;         210     G4double phi = G4UniformRand()*twopi;
201     G4double pxnew = p*std::sin(theta)*std::co    211     G4double pxnew = p*std::sin(theta)*std::cos(phi);
202     G4double pynew = p*std::sin(theta)*std::si    212     G4double pynew = p*std::sin(theta)*std::sin(phi);
203     G4double pznew = p*std::cos(theta);           213     G4double pznew = p*std::cos(theta);
204                                                   214 
205     // Rotate according to the direction of th    215     // Rotate according to the direction of the incident particle
206     if (px*px + py*py > 0) {                      216     if (px*px + py*py > 0) {
207       G4double cost, sint, ph, cosp, sinp;        217       G4double cost, sint, ph, cosp, sinp;
208       cost = pz/p;                                218       cost = pz/p;
209       sint = (std::sqrt(std::fabs((1-cost)*(1+ << 219       sint = (std::sqrt(std::abs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2;
210       py < 0 ? ph = 3*halfpi : ph = halfpi;       220       py < 0 ? ph = 3*halfpi : ph = halfpi;
211       if (std::abs(px) > 0.000001*GeV) ph = st    221       if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px);
212       cosp = std::cos(ph);                        222       cosp = std::cos(ph);
213       sinp = std::sin(ph);                        223       sinp = std::sin(ph);
214       px = (cost*cosp*pxnew - sinp*pynew + sin    224       px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
215       py = (cost*sinp*pxnew + cosp*pynew + sin    225       py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
216       pz = (-sint*pxnew                  + cos    226       pz = (-sint*pxnew                  + cost*pznew);
                                                   >> 227       //      G4ThreeVector it(a,b,c);
                                                   >> 228       //      p0->SetMomentum(it);
                                                   >> 229       //      G4ThreeVector aTargetMom = theInitial - it;
                                                   >> 230       //      targetParticle->SetMomentum(aTargetMom);
217     }                                             231     }
218     else {                                        232     else {
219       px = pxnew;                                 233       px = pxnew;
220       py = pynew;                                 234       py = pynew;
221       pz = pznew;                                 235       pz = pznew;
222     }                                             236     }
223                                                   237 
224     if (verboseLevel > 1) {                       238     if (verboseLevel > 1) {
225       G4cout << "  AFTER SCATTER..." << G4endl    239       G4cout << "  AFTER SCATTER..." << G4endl;
226       G4cout << "  particle 1 momentum in CM "    240       G4cout << "  particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
227            << pz/GeV << " " << p/GeV << G4endl    241            << pz/GeV << " " << p/GeV << G4endl;
228     }                                             242     }
229                                                   243 
230     // Transform to lab system                    244     // Transform to lab system
231                                                   245 
232     G4double E1pM2 = E1 + M2;                     246     G4double E1pM2 = E1 + M2;
233     G4double betaCM  = P/E1pM2;                   247     G4double betaCM  = P/E1pM2;
234     G4double betaCMx = Px/E1pM2;                  248     G4double betaCMx = Px/E1pM2;
235     G4double betaCMy = Py/E1pM2;                  249     G4double betaCMy = Py/E1pM2;
236     G4double betaCMz = Pz/E1pM2;                  250     G4double betaCMz = Pz/E1pM2;
237     G4double gammaCM = E1pM2/std::sqrt(E1pM2*E    251     G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
238                                                   252 
239     if (verboseLevel > 1) {                       253     if (verboseLevel > 1) {
240       G4cout << "  betaCM " << betaCMx << " "     254       G4cout << "  betaCM " << betaCMx << " " << betaCMy << " "
241              << betaCMz << " " << betaCM << G4    255              << betaCMz << " " << betaCM << G4endl;
242       G4cout << "  gammaCM " << gammaCM << G4e    256       G4cout << "  gammaCM " << gammaCM << G4endl;
243     }                                             257     }
244                                                   258 
245     // Now following GLOREN...                    259     // Now following GLOREN...
246                                                   260 
247     G4double BETA[5], PA[5], PB[5];               261     G4double BETA[5], PA[5], PB[5];
248     BETA[1] = -betaCMx;                           262     BETA[1] = -betaCMx;
249     BETA[2] = -betaCMy;                           263     BETA[2] = -betaCMy;
250     BETA[3] = -betaCMz;                           264     BETA[3] = -betaCMz;
251     BETA[4] = gammaCM;                            265     BETA[4] = gammaCM;
252                                                   266 
253     //The incident particle...                    267     //The incident particle...
254                                                   268 
255     PA[1] = px;                                   269     PA[1] = px;
256     PA[2] = py;                                   270     PA[2] = py;
257     PA[3] = pz;                                   271     PA[3] = pz;
258     PA[4] = std::sqrt(M1*M1 + p*p);               272     PA[4] = std::sqrt(M1*M1 + p*p);
259                                                   273 
260     G4double BETPA  = BETA[1]*PA[1] + BETA[2]*    274     G4double BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
261     G4double BPGAM  = (BETPA * BETA[4]/(BETA[4    275     G4double BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
262                                                   276 
263     PB[1] = PA[1] + BPGAM  * BETA[1];             277     PB[1] = PA[1] + BPGAM  * BETA[1];
264     PB[2] = PA[2] + BPGAM  * BETA[2];             278     PB[2] = PA[2] + BPGAM  * BETA[2];
265     PB[3] = PA[3] + BPGAM  * BETA[3];             279     PB[3] = PA[3] + BPGAM  * BETA[3];
266     PB[4] = (PA[4] - BETPA) * BETA[4];            280     PB[4] = (PA[4] - BETPA) * BETA[4];
267                                                   281 
268     G4DynamicParticle* newP = new G4DynamicPar    282     G4DynamicParticle* newP = new G4DynamicParticle;
269     newP->SetDefinition(aParticle->GetDefiniti << 283     newP->SetDefinition(const_cast<G4ParticleDefinition *>(aParticle->GetDefinition()));
270     newP->SetMomentum(G4ThreeVector(PB[1], PB[    284     newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
271                                                   285 
272     //The target particle...                      286     //The target particle...
273                                                   287 
274     PA[1] = -px;                                  288     PA[1] = -px;
275     PA[2] = -py;                                  289     PA[2] = -py;
276     PA[3] = -pz;                                  290     PA[3] = -pz;
277     PA[4] = std::sqrt(M2*M2 + p*p);               291     PA[4] = std::sqrt(M2*M2 + p*p);
278                                                   292 
279     BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + B    293     BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
280     BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) -    294     BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
281                                                   295 
282     PB[1] = PA[1] + BPGAM  * BETA[1];             296     PB[1] = PA[1] + BPGAM  * BETA[1];
283     PB[2] = PA[2] + BPGAM  * BETA[2];             297     PB[2] = PA[2] + BPGAM  * BETA[2];
284     PB[3] = PA[3] + BPGAM  * BETA[3];             298     PB[3] = PA[3] + BPGAM  * BETA[3];
285     PB[4] = (PA[4] - BETPA) * BETA[4];            299     PB[4] = (PA[4] - BETPA) * BETA[4];
286                                                   300 
287     targetParticle->SetMomentum(G4ThreeVector(    301     targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
288                                                   302 
289     if (verboseLevel > 1) {                       303     if (verboseLevel > 1) {
290       G4cout << "  particle 1 momentum in LAB     304       G4cout << "  particle 1 momentum in LAB " 
291            << newP->GetMomentum()*(1./GeV)        305            << newP->GetMomentum()*(1./GeV) 
292            << " " << newP->GetTotalMomentum()/    306            << " " << newP->GetTotalMomentum()/GeV << G4endl;
293       G4cout << "  particle 2 momentum in LAB     307       G4cout << "  particle 2 momentum in LAB " 
294            << targetParticle->GetMomentum()*(1    308            << targetParticle->GetMomentum()*(1./GeV) 
295            << " " << targetParticle->GetTotalM    309            << " " << targetParticle->GetTotalMomentum()/GeV << G4endl;
296       G4cout << "  TOTAL momentum in LAB "        310       G4cout << "  TOTAL momentum in LAB " 
297            << (newP->GetMomentum()+targetParti    311            << (newP->GetMomentum()+targetParticle->GetMomentum())*(1./GeV) 
298            << " "                                 312            << " " 
299            << (newP->GetMomentum()+targetParti    313            << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV
300            << G4endl;                             314            << G4endl;
301     }                                             315     }
302                                                   316 
303     theParticleChange.SetMomentumChange(newP->    317     theParticleChange.SetMomentumChange(newP->GetMomentumDirection());
304     theParticleChange.SetEnergyChange(newP->Ge    318     theParticleChange.SetEnergyChange(newP->GetKineticEnergy());
305     delete newP;                                  319     delete newP;
306     theParticleChange.AddSecondary(targetParti << 320     G4DynamicParticle* p1 = new G4DynamicParticle;
                                                   >> 321     p1->SetDefinition(targetParticle->GetDefinition());
                                                   >> 322     p1->SetMomentum(targetParticle->GetMomentum());
                                                   >> 323     theParticleChange.AddSecondary(p1);    
307                                                   324 
308     return &theParticleChange;                    325     return &theParticleChange;
309 }                                              << 
310                                                << 
311 ////////////////////////////////////////////// << 
312 //                                             << 
313 // sample momentum transfer using Lab. momentu << 
314                                                << 
315 G4double G4LEnp::SampleInvariantT(const G4Part << 
316           G4double plab, G4int , G4int )       << 
317 {                                              << 
318   G4double nMass = p->GetPDGMass(); // 939.565 << 
319   G4double ek = std::sqrt(plab*plab+nMass*nMas << 
320                                                << 
321     // Find energy bin                         << 
322                                                << 
323   G4int je1 = 0;                               << 
324   G4int je2 = NENERGY - 1;                     << 
325   ek = ek/GeV;                                 << 
326                                                << 
327   do                                           << 
328   {                                            << 
329       G4int midBin = (je1 + je2)/2;            << 
330       if (ek < elab[midBin])                   << 
331         je2 = midBin;                          << 
332       else                                     << 
333         je1 = midBin;                          << 
334   } while (je2 - je1 > 1);  /* Loop checking,  << 
335                                                << 
336   G4double delab = elab[je2] - elab[je1];      << 
337                                                << 
338     // Sample the angle                        << 
339                                                << 
340   G4double sample = G4UniformRand();           << 
341   G4int ke1 = 0;                               << 
342   G4int ke2 = NANGLE - 1;                      << 
343   G4double dsig = sig[je2][0] - sig[je1][0];   << 
344   G4double rc = dsig/delab;                    << 
345   G4double b = sig[je1][0] - rc*elab[je1];     << 
346   G4double sigint1 = rc*ek + b;                << 
347   G4double sigint2 = 0.;                       << 
348                                                << 
349   do                                           << 
350   {                                            << 
351       G4int midBin = (ke1 + ke2)/2;            << 
352       dsig = sig[je2][midBin] - sig[je1][midBi << 
353       rc = dsig/delab;                         << 
354       b = sig[je1][midBin] - rc*elab[je1];     << 
355       G4double sigint = rc*ek + b;             << 
356                                                << 
357       if (sample < sigint)                     << 
358       {                                        << 
359         ke2 = midBin;                          << 
360         sigint2 = sigint;                      << 
361       }                                        << 
362       else                                     << 
363       {                                        << 
364         ke1 = midBin;                          << 
365         sigint1 = sigint;                      << 
366       }                                        << 
367   } while (ke2 - ke1 > 1);  /* Loop checking,  << 
368                                                << 
369   dsig = sigint2 - sigint1;                    << 
370   rc = 1./dsig;                                << 
371   b = ke1 - rc*sigint1;                        << 
372                                                << 
373   G4double kint = rc*sample + b;               << 
374   G4double theta = (0.5 + kint)*pi/180.;       << 
375   G4double t = 0.5*plab*plab*(1-std::cos(theta << 
376                                                << 
377   return t;                                    << 
378 }                                                 326 }
379                                                   327 
380  // end of file                                   328  // end of file
381                                                   329