Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 26 27 // G4 Low energy model: n-p scattering << 27 // G4 Low energy model: n-p scattering 28 // F.W. Jones, L.G. Greeniaus, H.P. Wellisch << 28 // F.W. Jones, L.G. Greeniaus, H.P. Wellisch 29 29 30 // 11-OCT-2007 F.W. Jones: removed erroneous c << 31 // exchange of particles. << 32 // FWJ 27-AUG-2010: extended to 5 GeV by Tony << 33 30 34 #include "G4LEnp.hh" 31 #include "G4LEnp.hh" 35 #include "G4PhysicalConstants.hh" << 36 #include "G4SystemOfUnits.hh" << 37 #include "Randomize.hh" 32 #include "Randomize.hh" 38 #include "G4ios.hh" 33 #include "G4ios.hh" 39 34 40 // Initialization of static data arrays: 35 // Initialization of static data arrays: 41 #include "G4LEnpData.hh" 36 #include "G4LEnpData.hh" 42 #include "Randomize.hh" 37 #include "Randomize.hh" 43 38 44 #include "G4PhysicsModelCatalog.hh" << 45 39 46 << 40 G4LEnp::G4LEnp() : 47 G4LEnp::G4LEnp(): << 41 G4HadronicInteraction() 48 G4HadronElastic("G4LEnp") // G4HadronicInter << 49 { 42 { 50 secID = G4PhysicsModelCatalog::GetModelID( " << 51 // theParticleChange.SetNumberOfSecondari 43 // theParticleChange.SetNumberOfSecondaries(1); 52 44 53 // SetMinEnergy(10.*MeV); 45 // SetMinEnergy(10.*MeV); 54 // SetMaxEnergy(1200.*MeV); 46 // SetMaxEnergy(1200.*MeV); 55 SetMinEnergy(0.); 47 SetMinEnergy(0.); 56 SetMaxEnergy(5.*GeV); << 48 SetMaxEnergy(1200.*GeV); 57 } 49 } 58 50 59 G4LEnp::~G4LEnp() 51 G4LEnp::~G4LEnp() 60 { 52 { 61 theParticleChange.Clear(); 53 theParticleChange.Clear(); 62 } 54 } 63 55 64 G4HadFinalState* 56 G4HadFinalState* 65 G4LEnp::ApplyYourself(const G4HadProjectile& a 57 G4LEnp::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& targetNucleus) 66 { 58 { 67 theParticleChange.Clear(); 59 theParticleChange.Clear(); 68 const G4HadProjectile* aParticle = &aTrack 60 const G4HadProjectile* aParticle = &aTrack; 69 61 70 G4double P = aParticle->GetTotalMomentum() 62 G4double P = aParticle->GetTotalMomentum(); 71 G4double Px = aParticle->Get4Momentum().x( 63 G4double Px = aParticle->Get4Momentum().x(); 72 G4double Py = aParticle->Get4Momentum().y( 64 G4double Py = aParticle->Get4Momentum().y(); 73 G4double Pz = aParticle->Get4Momentum().z( 65 G4double Pz = aParticle->Get4Momentum().z(); 74 G4double ek = aParticle->GetKineticEnergy( 66 G4double ek = aParticle->GetKineticEnergy(); 75 G4ThreeVector theInitial = aParticle->Get4 67 G4ThreeVector theInitial = aParticle->Get4Momentum().vect(); 76 68 77 if (verboseLevel > 1) { 69 if (verboseLevel > 1) { 78 G4double E = aParticle->GetTotalEnergy() 70 G4double E = aParticle->GetTotalEnergy(); 79 G4double E0 = aParticle->GetDefinition() 71 G4double E0 = aParticle->GetDefinition()->GetPDGMass(); 80 G4double Q = aParticle->GetDefinition()- 72 G4double Q = aParticle->GetDefinition()->GetPDGCharge(); 81 G4int A = targetNucleus.GetA_asInt(); << 73 G4double N = targetNucleus.GetN(); 82 G4int Z = targetNucleus.GetZ_asInt(); << 74 G4double Z = targetNucleus.GetZ(); 83 G4cout << "G4LEnp:ApplyYourself: inciden 75 G4cout << "G4LEnp:ApplyYourself: incident particle: " 84 << aParticle->GetDefinition()->Ge 76 << aParticle->GetDefinition()->GetParticleName() << G4endl; 85 G4cout << "P = " << P/GeV << " GeV/c" 77 G4cout << "P = " << P/GeV << " GeV/c" 86 << ", Px = " << Px/GeV << " GeV/c 78 << ", Px = " << Px/GeV << " GeV/c" 87 << ", Py = " << Py/GeV << " GeV/c 79 << ", Py = " << Py/GeV << " GeV/c" 88 << ", Pz = " << Pz/GeV << " GeV/c 80 << ", Pz = " << Pz/GeV << " GeV/c" << G4endl; 89 G4cout << "E = " << E/GeV << " GeV" 81 G4cout << "E = " << E/GeV << " GeV" 90 << ", kinetic energy = " << ek/Ge 82 << ", kinetic energy = " << ek/GeV << " GeV" 91 << ", mass = " << E0/GeV << " GeV 83 << ", mass = " << E0/GeV << " GeV" 92 << ", charge = " << Q << G4endl; 84 << ", charge = " << Q << G4endl; 93 G4cout << "G4LEnp:ApplyYourself: materia 85 G4cout << "G4LEnp:ApplyYourself: material:" << G4endl; 94 G4cout << "A = " << A << 86 G4cout << "A = " << N 95 << ", Z = " << Z 87 << ", Z = " << Z 96 << ", atomic mass " 88 << ", atomic mass " 97 << G4Proton::Proton()->GetPDGMas 89 << G4Proton::Proton()->GetPDGMass()/GeV << "GeV" 98 << G4endl; 90 << G4endl; 99 // 91 // 100 // GHEISHA ADD operation to get total en 92 // GHEISHA ADD operation to get total energy, mass, charge 101 // 93 // 102 E += proton_mass_c2; << 94 E += G4Proton::Proton()->GetPDGMass(); 103 G4double E02 = E*E - P*P; 95 G4double E02 = E*E - P*P; 104 E0 = std::sqrt(std::abs(E02)); 96 E0 = std::sqrt(std::abs(E02)); 105 if (E02 < 0)E0 *= -1; 97 if (E02 < 0)E0 *= -1; 106 Q += Z; 98 Q += Z; 107 G4cout << "G4LEnp:ApplyYourself: total:" 99 G4cout << "G4LEnp:ApplyYourself: total:" << G4endl; 108 G4cout << "E = " << E/GeV << " GeV" 100 G4cout << "E = " << E/GeV << " GeV" 109 << ", mass = " << E0/GeV << " GeV 101 << ", mass = " << E0/GeV << " GeV" 110 << ", charge = " << Q << G4endl; 102 << ", charge = " << Q << G4endl; 111 } 103 } 112 104 113 // Find energy bin 105 // Find energy bin 114 106 115 G4int je1 = 0; 107 G4int je1 = 0; 116 G4int je2 = NENERGY - 1; 108 G4int je2 = NENERGY - 1; 117 ek = ek/GeV; 109 ek = ek/GeV; 118 do { 110 do { 119 G4int midBin = (je1 + je2)/2; 111 G4int midBin = (je1 + je2)/2; 120 if (ek < elab[midBin]) 112 if (ek < elab[midBin]) 121 je2 = midBin; 113 je2 = midBin; 122 else 114 else 123 je1 = midBin; 115 je1 = midBin; 124 } while (je2 - je1 > 1); /* Loop checking << 116 } while (je2 - je1 > 1); >> 117 // G4int j; >> 118 //std::abs(ek-elab[je1]) < std::abs(ek-elab[je2]) ? j = je1 : j = je2; 125 G4double delab = elab[je2] - elab[je1]; 119 G4double delab = elab[je2] - elab[je1]; 126 120 127 // Sample the angle 121 // Sample the angle 128 122 129 G4double sample = G4UniformRand(); << 123 G4float sample = G4UniformRand(); 130 G4int ke1 = 0; 124 G4int ke1 = 0; 131 G4int ke2 = NANGLE - 1; 125 G4int ke2 = NANGLE - 1; 132 G4double dsig = sig[je2][0] - sig[je1][0]; 126 G4double dsig = sig[je2][0] - sig[je1][0]; 133 G4double rc = dsig/delab; 127 G4double rc = dsig/delab; 134 G4double b = sig[je1][0] - rc*elab[je1]; 128 G4double b = sig[je1][0] - rc*elab[je1]; 135 G4double sigint1 = rc*ek + b; 129 G4double sigint1 = rc*ek + b; 136 G4double sigint2 = 0.; 130 G4double sigint2 = 0.; 137 131 138 if (verboseLevel > 1) { << 132 if (verboseLevel > 1) G4cout << "sample=" << sample << G4endl 139 G4cout << "sample=" << sample << G4endl << 133 << ke1 << " " << ke2 << " " 140 << ke1 << " " << ke2 << " " << 134 << sigint1 << " " << sigint2 << G4endl; 141 << sigint1 << " " << sigint2 << G4endl; << 135 142 } << 143 do { 136 do { 144 G4int midBin = (ke1 + ke2)/2; 137 G4int midBin = (ke1 + ke2)/2; 145 dsig = sig[je2][midBin] - sig[je1][midBi 138 dsig = sig[je2][midBin] - sig[je1][midBin]; 146 rc = dsig/delab; 139 rc = dsig/delab; 147 b = sig[je1][midBin] - rc*elab[je1]; 140 b = sig[je1][midBin] - rc*elab[je1]; 148 G4double sigint = rc*ek + b; 141 G4double sigint = rc*ek + b; 149 if (sample < sigint) { 142 if (sample < sigint) { 150 ke2 = midBin; 143 ke2 = midBin; 151 sigint2 = sigint; 144 sigint2 = sigint; 152 } 145 } 153 else { 146 else { 154 ke1 = midBin; 147 ke1 = midBin; 155 sigint1 = sigint; 148 sigint1 = sigint; 156 } 149 } 157 if (verboseLevel > 1) { << 150 if (verboseLevel > 1)G4cout << ke1 << " " << ke2 << " " 158 G4cout << ke1 << " " << ke2 << " " << 151 << sigint1 << " " << sigint2 << G4endl; 159 << sigint1 << " " << sigint2 << G4end << 152 } while (ke2 - ke1 > 1); 160 } << 153 161 } while (ke2 - ke1 > 1); /* Loop checking << 154 // sigint1 and sigint2 should be recoverable from above loop >> 155 >> 156 // G4double dsig = sig[je2][ke1] - sig[je1][ke1]; >> 157 // G4double rc = dsig/delab; >> 158 // G4double b = sig[je1][ke1] - rc*elab[je1]; >> 159 // G4double sigint1 = rc*ek + b; >> 160 >> 161 // G4double dsig = sig[je2][ke2] - sig[je1][ke2]; >> 162 // G4double rc = dsig/delab; >> 163 // G4double b = sig[je1][ke2] - rc*elab[je1]; >> 164 // G4double sigint2 = rc*ek + b; 162 165 163 dsig = sigint2 - sigint1; 166 dsig = sigint2 - sigint1; 164 rc = 1./dsig; 167 rc = 1./dsig; 165 b = ke1 - rc*sigint1; 168 b = ke1 - rc*sigint1; 166 G4double kint = rc*sample + b; 169 G4double kint = rc*sample + b; 167 G4double theta = (0.5 + kint)*pi/180.; 170 G4double theta = (0.5 + kint)*pi/180.; 168 171 >> 172 // G4int k; >> 173 //std::abs(sample-sig[j][ke1]) < std::abs(sample-sig[j][ke2]) ? k = ke1 : k = ke2; >> 174 // G4double theta = (0.5 + k)*pi/180.; >> 175 169 if (verboseLevel > 1) { 176 if (verboseLevel > 1) { 170 G4cout << " energy bin " << je1 << " e 177 G4cout << " energy bin " << je1 << " energy=" << elab[je1] << G4endl; 171 G4cout << " angle bin " << kint << " a 178 G4cout << " angle bin " << kint << " angle=" << theta/degree << G4endl; 172 } 179 } 173 180 >> 181 174 // Get the target particle 182 // Get the target particle 175 183 176 G4DynamicParticle* targetParticle = target 184 G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle(); 177 185 178 G4double E1 = aParticle->GetTotalEnergy(); 186 G4double E1 = aParticle->GetTotalEnergy(); 179 G4double M1 = aParticle->GetDefinition()-> 187 G4double M1 = aParticle->GetDefinition()->GetPDGMass(); 180 G4double E2 = targetParticle->GetTotalEner 188 G4double E2 = targetParticle->GetTotalEnergy(); 181 G4double M2 = targetParticle->GetDefinitio 189 G4double M2 = targetParticle->GetDefinition()->GetPDGMass(); 182 G4double totalEnergy = E1 + E2; 190 G4double totalEnergy = E1 + E2; 183 G4double pseudoMass = std::sqrt(totalEnerg 191 G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P); >> 192 // pseudoMass also = std::sqrt(M1*M1 + M2*M2 + 2*M2*E1) 184 193 185 // Transform into centre of mass system 194 // Transform into centre of mass system 186 195 187 G4double px = (M2/pseudoMass)*Px; 196 G4double px = (M2/pseudoMass)*Px; 188 G4double py = (M2/pseudoMass)*Py; 197 G4double py = (M2/pseudoMass)*Py; 189 G4double pz = (M2/pseudoMass)*Pz; 198 G4double pz = (M2/pseudoMass)*Pz; 190 G4double p = std::sqrt(px*px + py*py + pz* 199 G4double p = std::sqrt(px*px + py*py + pz*pz); 191 200 192 if (verboseLevel > 1) { 201 if (verboseLevel > 1) { 193 G4cout << " E1, M1 (GeV) " << E1/GeV << 202 G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl; 194 G4cout << " E2, M2 (GeV) " << E2/GeV << 203 G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl; 195 G4cout << " particle 1 momentum in CM 204 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " " 196 << pz/GeV << " " << p/GeV << G4endl 205 << pz/GeV << " " << p/GeV << G4endl; 197 } 206 } 198 207 199 // First scatter w.r.t. Z axis 208 // First scatter w.r.t. Z axis 200 G4double phi = G4UniformRand()*twopi; 209 G4double phi = G4UniformRand()*twopi; 201 G4double pxnew = p*std::sin(theta)*std::co 210 G4double pxnew = p*std::sin(theta)*std::cos(phi); 202 G4double pynew = p*std::sin(theta)*std::si 211 G4double pynew = p*std::sin(theta)*std::sin(phi); 203 G4double pznew = p*std::cos(theta); 212 G4double pznew = p*std::cos(theta); 204 213 205 // Rotate according to the direction of th 214 // Rotate according to the direction of the incident particle 206 if (px*px + py*py > 0) { 215 if (px*px + py*py > 0) { 207 G4double cost, sint, ph, cosp, sinp; 216 G4double cost, sint, ph, cosp, sinp; 208 cost = pz/p; 217 cost = pz/p; 209 sint = (std::sqrt(std::fabs((1-cost)*(1+ << 218 sint = (std::sqrt(std::abs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2; 210 py < 0 ? ph = 3*halfpi : ph = halfpi; 219 py < 0 ? ph = 3*halfpi : ph = halfpi; 211 if (std::abs(px) > 0.000001*GeV) ph = st 220 if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px); 212 cosp = std::cos(ph); 221 cosp = std::cos(ph); 213 sinp = std::sin(ph); 222 sinp = std::sin(ph); 214 px = (cost*cosp*pxnew - sinp*pynew + sin 223 px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew); 215 py = (cost*sinp*pxnew + cosp*pynew + sin 224 py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew); 216 pz = (-sint*pxnew + cos 225 pz = (-sint*pxnew + cost*pznew); >> 226 // G4ThreeVector it(a,b,c); >> 227 // p0->SetMomentum(it); >> 228 // G4ThreeVector aTargetMom = theInitial - it; >> 229 // targetParticle->SetMomentum(aTargetMom); 217 } 230 } 218 else { 231 else { 219 px = pxnew; 232 px = pxnew; 220 py = pynew; 233 py = pynew; 221 pz = pznew; 234 pz = pznew; 222 } 235 } 223 236 224 if (verboseLevel > 1) { 237 if (verboseLevel > 1) { 225 G4cout << " AFTER SCATTER..." << G4endl 238 G4cout << " AFTER SCATTER..." << G4endl; 226 G4cout << " particle 1 momentum in CM " 239 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " " 227 << pz/GeV << " " << p/GeV << G4endl 240 << pz/GeV << " " << p/GeV << G4endl; 228 } 241 } 229 242 230 // Transform to lab system 243 // Transform to lab system 231 244 232 G4double E1pM2 = E1 + M2; 245 G4double E1pM2 = E1 + M2; 233 G4double betaCM = P/E1pM2; 246 G4double betaCM = P/E1pM2; 234 G4double betaCMx = Px/E1pM2; 247 G4double betaCMx = Px/E1pM2; 235 G4double betaCMy = Py/E1pM2; 248 G4double betaCMy = Py/E1pM2; 236 G4double betaCMz = Pz/E1pM2; 249 G4double betaCMz = Pz/E1pM2; 237 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E 250 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P); 238 251 239 if (verboseLevel > 1) { 252 if (verboseLevel > 1) { 240 G4cout << " betaCM " << betaCMx << " " 253 G4cout << " betaCM " << betaCMx << " " << betaCMy << " " 241 << betaCMz << " " << betaCM << G4 254 << betaCMz << " " << betaCM << G4endl; 242 G4cout << " gammaCM " << gammaCM << G4e 255 G4cout << " gammaCM " << gammaCM << G4endl; 243 } 256 } 244 257 245 // Now following GLOREN... 258 // Now following GLOREN... 246 259 247 G4double BETA[5], PA[5], PB[5]; 260 G4double BETA[5], PA[5], PB[5]; 248 BETA[1] = -betaCMx; 261 BETA[1] = -betaCMx; 249 BETA[2] = -betaCMy; 262 BETA[2] = -betaCMy; 250 BETA[3] = -betaCMz; 263 BETA[3] = -betaCMz; 251 BETA[4] = gammaCM; 264 BETA[4] = gammaCM; 252 265 253 //The incident particle... 266 //The incident particle... 254 267 255 PA[1] = px; 268 PA[1] = px; 256 PA[2] = py; 269 PA[2] = py; 257 PA[3] = pz; 270 PA[3] = pz; 258 PA[4] = std::sqrt(M1*M1 + p*p); 271 PA[4] = std::sqrt(M1*M1 + p*p); 259 272 260 G4double BETPA = BETA[1]*PA[1] + BETA[2]* 273 G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3]; 261 G4double BPGAM = (BETPA * BETA[4]/(BETA[4 274 G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4]; 262 275 263 PB[1] = PA[1] + BPGAM * BETA[1]; 276 PB[1] = PA[1] + BPGAM * BETA[1]; 264 PB[2] = PA[2] + BPGAM * BETA[2]; 277 PB[2] = PA[2] + BPGAM * BETA[2]; 265 PB[3] = PA[3] + BPGAM * BETA[3]; 278 PB[3] = PA[3] + BPGAM * BETA[3]; 266 PB[4] = (PA[4] - BETPA) * BETA[4]; 279 PB[4] = (PA[4] - BETPA) * BETA[4]; 267 280 268 G4DynamicParticle* newP = new G4DynamicPar 281 G4DynamicParticle* newP = new G4DynamicParticle; 269 newP->SetDefinition(aParticle->GetDefiniti << 282 newP->SetDefinition(const_cast<G4ParticleDefinition *>(aParticle->GetDefinition())); 270 newP->SetMomentum(G4ThreeVector(PB[1], PB[ 283 newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3])); 271 284 272 //The target particle... 285 //The target particle... 273 286 274 PA[1] = -px; 287 PA[1] = -px; 275 PA[2] = -py; 288 PA[2] = -py; 276 PA[3] = -pz; 289 PA[3] = -pz; 277 PA[4] = std::sqrt(M2*M2 + p*p); 290 PA[4] = std::sqrt(M2*M2 + p*p); 278 291 279 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + B 292 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3]; 280 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - 293 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4]; 281 294 282 PB[1] = PA[1] + BPGAM * BETA[1]; 295 PB[1] = PA[1] + BPGAM * BETA[1]; 283 PB[2] = PA[2] + BPGAM * BETA[2]; 296 PB[2] = PA[2] + BPGAM * BETA[2]; 284 PB[3] = PA[3] + BPGAM * BETA[3]; 297 PB[3] = PA[3] + BPGAM * BETA[3]; 285 PB[4] = (PA[4] - BETPA) * BETA[4]; 298 PB[4] = (PA[4] - BETPA) * BETA[4]; 286 299 287 targetParticle->SetMomentum(G4ThreeVector( 300 targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3])); 288 301 289 if (verboseLevel > 1) { 302 if (verboseLevel > 1) { 290 G4cout << " particle 1 momentum in LAB 303 G4cout << " particle 1 momentum in LAB " 291 << newP->GetMomentum()*(1./GeV) 304 << newP->GetMomentum()*(1./GeV) 292 << " " << newP->GetTotalMomentum()/ 305 << " " << newP->GetTotalMomentum()/GeV << G4endl; 293 G4cout << " particle 2 momentum in LAB 306 G4cout << " particle 2 momentum in LAB " 294 << targetParticle->GetMomentum()*(1 307 << targetParticle->GetMomentum()*(1./GeV) 295 << " " << targetParticle->GetTotalM 308 << " " << targetParticle->GetTotalMomentum()/GeV << G4endl; 296 G4cout << " TOTAL momentum in LAB " 309 G4cout << " TOTAL momentum in LAB " 297 << (newP->GetMomentum()+targetParti 310 << (newP->GetMomentum()+targetParticle->GetMomentum())*(1./GeV) 298 << " " 311 << " " 299 << (newP->GetMomentum()+targetParti 312 << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV 300 << G4endl; 313 << G4endl; 301 } 314 } 302 315 303 theParticleChange.SetMomentumChange(newP-> << 316 // charge symmetry.... 304 theParticleChange.SetEnergyChange(newP->Ge << 317 if(G4UniformRand()<.5) 305 delete newP; << 318 { 306 theParticleChange.AddSecondary(targetParti << 319 theParticleChange.SetMomentumChange(newP->GetMomentumDirection()); 307 << 320 theParticleChange.SetEnergyChange(newP->GetKineticEnergy()); >> 321 delete newP; >> 322 G4DynamicParticle* p1 = new G4DynamicParticle; >> 323 p1->SetDefinition(targetParticle->GetDefinition()); >> 324 p1->SetMomentum(targetParticle->GetMomentum()); >> 325 theParticleChange.AddSecondary(p1); >> 326 } >> 327 else >> 328 { >> 329 theParticleChange.SetStatusChange(stopAndKill); >> 330 G4DynamicParticle * pA = new G4DynamicParticle; >> 331 pA->SetDefinition(targetParticle->GetDefinition()); >> 332 pA->SetMomentum(newP->GetMomentum()); >> 333 G4DynamicParticle * pB = new G4DynamicParticle; >> 334 pB->SetDefinition(newP->GetDefinition()); >> 335 pB->SetMomentum(targetParticle->GetMomentum()); >> 336 delete newP; >> 337 theParticleChange.AddSecondary(pA); >> 338 theParticleChange.AddSecondary(pB); >> 339 } 308 return &theParticleChange; 340 return &theParticleChange; 309 } << 310 << 311 ////////////////////////////////////////////// << 312 // << 313 // sample momentum transfer using Lab. momentu << 314 << 315 G4double G4LEnp::SampleInvariantT(const G4Part << 316 G4double plab, G4int , G4int ) << 317 { << 318 G4double nMass = p->GetPDGMass(); // 939.565 << 319 G4double ek = std::sqrt(plab*plab+nMass*nMas << 320 << 321 // Find energy bin << 322 << 323 G4int je1 = 0; << 324 G4int je2 = NENERGY - 1; << 325 ek = ek/GeV; << 326 << 327 do << 328 { << 329 G4int midBin = (je1 + je2)/2; << 330 if (ek < elab[midBin]) << 331 je2 = midBin; << 332 else << 333 je1 = midBin; << 334 } while (je2 - je1 > 1); /* Loop checking, << 335 << 336 G4double delab = elab[je2] - elab[je1]; << 337 << 338 // Sample the angle << 339 << 340 G4double sample = G4UniformRand(); << 341 G4int ke1 = 0; << 342 G4int ke2 = NANGLE - 1; << 343 G4double dsig = sig[je2][0] - sig[je1][0]; << 344 G4double rc = dsig/delab; << 345 G4double b = sig[je1][0] - rc*elab[je1]; << 346 G4double sigint1 = rc*ek + b; << 347 G4double sigint2 = 0.; << 348 << 349 do << 350 { << 351 G4int midBin = (ke1 + ke2)/2; << 352 dsig = sig[je2][midBin] - sig[je1][midBi << 353 rc = dsig/delab; << 354 b = sig[je1][midBin] - rc*elab[je1]; << 355 G4double sigint = rc*ek + b; << 356 << 357 if (sample < sigint) << 358 { << 359 ke2 = midBin; << 360 sigint2 = sigint; << 361 } << 362 else << 363 { << 364 ke1 = midBin; << 365 sigint1 = sigint; << 366 } << 367 } while (ke2 - ke1 > 1); /* Loop checking, << 368 << 369 dsig = sigint2 - sigint1; << 370 rc = 1./dsig; << 371 b = ke1 - rc*sigint1; << 372 << 373 G4double kint = rc*sample + b; << 374 G4double theta = (0.5 + kint)*pi/180.; << 375 G4double t = 0.5*plab*plab*(1-std::cos(theta << 376 << 377 return t; << 378 } 341 } 379 342 380 // end of file 343 // end of file 381 344