Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 26 27 // G4 Low energy model: n-p scattering 27 // G4 Low energy model: n-p scattering 28 // F.W. Jones, L.G. Greeniaus, H.P. Wellisch 28 // F.W. Jones, L.G. Greeniaus, H.P. Wellisch 29 29 30 // 11-OCT-2007 F.W. Jones: removed erroneous c 30 // 11-OCT-2007 F.W. Jones: removed erroneous code for identity 31 // exchange of particles. 31 // exchange of particles. 32 // FWJ 27-AUG-2010: extended to 5 GeV by Tony 32 // FWJ 27-AUG-2010: extended to 5 GeV by Tony Kwan TRIUMF 33 33 34 #include "G4LEnp.hh" 34 #include "G4LEnp.hh" 35 #include "G4PhysicalConstants.hh" 35 #include "G4PhysicalConstants.hh" 36 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 37 #include "Randomize.hh" 37 #include "Randomize.hh" 38 #include "G4ios.hh" 38 #include "G4ios.hh" 39 39 40 // Initialization of static data arrays: 40 // Initialization of static data arrays: 41 #include "G4LEnpData.hh" 41 #include "G4LEnpData.hh" 42 #include "Randomize.hh" 42 #include "Randomize.hh" 43 43 44 #include "G4PhysicsModelCatalog.hh" << 45 << 46 44 47 G4LEnp::G4LEnp(): 45 G4LEnp::G4LEnp(): 48 G4HadronElastic("G4LEnp") // G4HadronicInter 46 G4HadronElastic("G4LEnp") // G4HadronicInteraction("G4LEnp") 49 { 47 { 50 secID = G4PhysicsModelCatalog::GetModelID( " << 51 // theParticleChange.SetNumberOfSecondari 48 // theParticleChange.SetNumberOfSecondaries(1); 52 49 53 // SetMinEnergy(10.*MeV); 50 // SetMinEnergy(10.*MeV); 54 // SetMaxEnergy(1200.*MeV); 51 // SetMaxEnergy(1200.*MeV); 55 SetMinEnergy(0.); 52 SetMinEnergy(0.); 56 SetMaxEnergy(5.*GeV); 53 SetMaxEnergy(5.*GeV); 57 } 54 } 58 55 59 G4LEnp::~G4LEnp() 56 G4LEnp::~G4LEnp() 60 { 57 { 61 theParticleChange.Clear(); 58 theParticleChange.Clear(); 62 } 59 } 63 60 64 G4HadFinalState* 61 G4HadFinalState* 65 G4LEnp::ApplyYourself(const G4HadProjectile& a 62 G4LEnp::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& targetNucleus) 66 { 63 { 67 theParticleChange.Clear(); 64 theParticleChange.Clear(); 68 const G4HadProjectile* aParticle = &aTrack 65 const G4HadProjectile* aParticle = &aTrack; 69 66 70 G4double P = aParticle->GetTotalMomentum() 67 G4double P = aParticle->GetTotalMomentum(); 71 G4double Px = aParticle->Get4Momentum().x( 68 G4double Px = aParticle->Get4Momentum().x(); 72 G4double Py = aParticle->Get4Momentum().y( 69 G4double Py = aParticle->Get4Momentum().y(); 73 G4double Pz = aParticle->Get4Momentum().z( 70 G4double Pz = aParticle->Get4Momentum().z(); 74 G4double ek = aParticle->GetKineticEnergy( 71 G4double ek = aParticle->GetKineticEnergy(); 75 G4ThreeVector theInitial = aParticle->Get4 72 G4ThreeVector theInitial = aParticle->Get4Momentum().vect(); 76 73 77 if (verboseLevel > 1) { 74 if (verboseLevel > 1) { 78 G4double E = aParticle->GetTotalEnergy() 75 G4double E = aParticle->GetTotalEnergy(); 79 G4double E0 = aParticle->GetDefinition() 76 G4double E0 = aParticle->GetDefinition()->GetPDGMass(); 80 G4double Q = aParticle->GetDefinition()- 77 G4double Q = aParticle->GetDefinition()->GetPDGCharge(); 81 G4int A = targetNucleus.GetA_asInt(); 78 G4int A = targetNucleus.GetA_asInt(); 82 G4int Z = targetNucleus.GetZ_asInt(); 79 G4int Z = targetNucleus.GetZ_asInt(); 83 G4cout << "G4LEnp:ApplyYourself: inciden 80 G4cout << "G4LEnp:ApplyYourself: incident particle: " 84 << aParticle->GetDefinition()->Ge 81 << aParticle->GetDefinition()->GetParticleName() << G4endl; 85 G4cout << "P = " << P/GeV << " GeV/c" 82 G4cout << "P = " << P/GeV << " GeV/c" 86 << ", Px = " << Px/GeV << " GeV/c 83 << ", Px = " << Px/GeV << " GeV/c" 87 << ", Py = " << Py/GeV << " GeV/c 84 << ", Py = " << Py/GeV << " GeV/c" 88 << ", Pz = " << Pz/GeV << " GeV/c 85 << ", Pz = " << Pz/GeV << " GeV/c" << G4endl; 89 G4cout << "E = " << E/GeV << " GeV" 86 G4cout << "E = " << E/GeV << " GeV" 90 << ", kinetic energy = " << ek/Ge 87 << ", kinetic energy = " << ek/GeV << " GeV" 91 << ", mass = " << E0/GeV << " GeV 88 << ", mass = " << E0/GeV << " GeV" 92 << ", charge = " << Q << G4endl; 89 << ", charge = " << Q << G4endl; 93 G4cout << "G4LEnp:ApplyYourself: materia 90 G4cout << "G4LEnp:ApplyYourself: material:" << G4endl; 94 G4cout << "A = " << A 91 G4cout << "A = " << A 95 << ", Z = " << Z 92 << ", Z = " << Z 96 << ", atomic mass " 93 << ", atomic mass " 97 << G4Proton::Proton()->GetPDGMas 94 << G4Proton::Proton()->GetPDGMass()/GeV << "GeV" 98 << G4endl; 95 << G4endl; 99 // 96 // 100 // GHEISHA ADD operation to get total en 97 // GHEISHA ADD operation to get total energy, mass, charge 101 // 98 // 102 E += proton_mass_c2; 99 E += proton_mass_c2; 103 G4double E02 = E*E - P*P; 100 G4double E02 = E*E - P*P; 104 E0 = std::sqrt(std::abs(E02)); 101 E0 = std::sqrt(std::abs(E02)); 105 if (E02 < 0)E0 *= -1; 102 if (E02 < 0)E0 *= -1; 106 Q += Z; 103 Q += Z; 107 G4cout << "G4LEnp:ApplyYourself: total:" 104 G4cout << "G4LEnp:ApplyYourself: total:" << G4endl; 108 G4cout << "E = " << E/GeV << " GeV" 105 G4cout << "E = " << E/GeV << " GeV" 109 << ", mass = " << E0/GeV << " GeV 106 << ", mass = " << E0/GeV << " GeV" 110 << ", charge = " << Q << G4endl; 107 << ", charge = " << Q << G4endl; 111 } 108 } 112 109 113 // Find energy bin 110 // Find energy bin 114 111 115 G4int je1 = 0; 112 G4int je1 = 0; 116 G4int je2 = NENERGY - 1; 113 G4int je2 = NENERGY - 1; 117 ek = ek/GeV; 114 ek = ek/GeV; 118 do { 115 do { 119 G4int midBin = (je1 + je2)/2; 116 G4int midBin = (je1 + je2)/2; 120 if (ek < elab[midBin]) 117 if (ek < elab[midBin]) 121 je2 = midBin; 118 je2 = midBin; 122 else 119 else 123 je1 = midBin; 120 je1 = midBin; 124 } while (je2 - je1 > 1); /* Loop checking << 121 } while (je2 - je1 > 1); 125 G4double delab = elab[je2] - elab[je1]; 122 G4double delab = elab[je2] - elab[je1]; 126 123 127 // Sample the angle 124 // Sample the angle 128 125 129 G4double sample = G4UniformRand(); << 126 G4float sample = G4UniformRand(); 130 G4int ke1 = 0; 127 G4int ke1 = 0; 131 G4int ke2 = NANGLE - 1; 128 G4int ke2 = NANGLE - 1; 132 G4double dsig = sig[je2][0] - sig[je1][0]; 129 G4double dsig = sig[je2][0] - sig[je1][0]; 133 G4double rc = dsig/delab; 130 G4double rc = dsig/delab; 134 G4double b = sig[je1][0] - rc*elab[je1]; 131 G4double b = sig[je1][0] - rc*elab[je1]; 135 G4double sigint1 = rc*ek + b; 132 G4double sigint1 = rc*ek + b; 136 G4double sigint2 = 0.; 133 G4double sigint2 = 0.; 137 134 138 if (verboseLevel > 1) { 135 if (verboseLevel > 1) { 139 G4cout << "sample=" << sample << G4endl 136 G4cout << "sample=" << sample << G4endl 140 << ke1 << " " << ke2 << " " 137 << ke1 << " " << ke2 << " " 141 << sigint1 << " " << sigint2 << G4endl; 138 << sigint1 << " " << sigint2 << G4endl; 142 } 139 } 143 do { 140 do { 144 G4int midBin = (ke1 + ke2)/2; 141 G4int midBin = (ke1 + ke2)/2; 145 dsig = sig[je2][midBin] - sig[je1][midBi 142 dsig = sig[je2][midBin] - sig[je1][midBin]; 146 rc = dsig/delab; 143 rc = dsig/delab; 147 b = sig[je1][midBin] - rc*elab[je1]; 144 b = sig[je1][midBin] - rc*elab[je1]; 148 G4double sigint = rc*ek + b; 145 G4double sigint = rc*ek + b; 149 if (sample < sigint) { 146 if (sample < sigint) { 150 ke2 = midBin; 147 ke2 = midBin; 151 sigint2 = sigint; 148 sigint2 = sigint; 152 } 149 } 153 else { 150 else { 154 ke1 = midBin; 151 ke1 = midBin; 155 sigint1 = sigint; 152 sigint1 = sigint; 156 } 153 } 157 if (verboseLevel > 1) { 154 if (verboseLevel > 1) { 158 G4cout << ke1 << " " << ke2 << " " 155 G4cout << ke1 << " " << ke2 << " " 159 << sigint1 << " " << sigint2 << G4end 156 << sigint1 << " " << sigint2 << G4endl; 160 } 157 } 161 } while (ke2 - ke1 > 1); /* Loop checking << 158 } while (ke2 - ke1 > 1); 162 159 163 dsig = sigint2 - sigint1; 160 dsig = sigint2 - sigint1; 164 rc = 1./dsig; 161 rc = 1./dsig; 165 b = ke1 - rc*sigint1; 162 b = ke1 - rc*sigint1; 166 G4double kint = rc*sample + b; 163 G4double kint = rc*sample + b; 167 G4double theta = (0.5 + kint)*pi/180.; 164 G4double theta = (0.5 + kint)*pi/180.; 168 165 169 if (verboseLevel > 1) { 166 if (verboseLevel > 1) { 170 G4cout << " energy bin " << je1 << " e 167 G4cout << " energy bin " << je1 << " energy=" << elab[je1] << G4endl; 171 G4cout << " angle bin " << kint << " a 168 G4cout << " angle bin " << kint << " angle=" << theta/degree << G4endl; 172 } 169 } 173 170 174 // Get the target particle 171 // Get the target particle 175 172 176 G4DynamicParticle* targetParticle = target 173 G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle(); 177 174 178 G4double E1 = aParticle->GetTotalEnergy(); 175 G4double E1 = aParticle->GetTotalEnergy(); 179 G4double M1 = aParticle->GetDefinition()-> 176 G4double M1 = aParticle->GetDefinition()->GetPDGMass(); 180 G4double E2 = targetParticle->GetTotalEner 177 G4double E2 = targetParticle->GetTotalEnergy(); 181 G4double M2 = targetParticle->GetDefinitio 178 G4double M2 = targetParticle->GetDefinition()->GetPDGMass(); 182 G4double totalEnergy = E1 + E2; 179 G4double totalEnergy = E1 + E2; 183 G4double pseudoMass = std::sqrt(totalEnerg 180 G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P); 184 181 185 // Transform into centre of mass system 182 // Transform into centre of mass system 186 183 187 G4double px = (M2/pseudoMass)*Px; 184 G4double px = (M2/pseudoMass)*Px; 188 G4double py = (M2/pseudoMass)*Py; 185 G4double py = (M2/pseudoMass)*Py; 189 G4double pz = (M2/pseudoMass)*Pz; 186 G4double pz = (M2/pseudoMass)*Pz; 190 G4double p = std::sqrt(px*px + py*py + pz* 187 G4double p = std::sqrt(px*px + py*py + pz*pz); 191 188 192 if (verboseLevel > 1) { 189 if (verboseLevel > 1) { 193 G4cout << " E1, M1 (GeV) " << E1/GeV << 190 G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl; 194 G4cout << " E2, M2 (GeV) " << E2/GeV << 191 G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl; 195 G4cout << " particle 1 momentum in CM 192 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " " 196 << pz/GeV << " " << p/GeV << G4endl 193 << pz/GeV << " " << p/GeV << G4endl; 197 } 194 } 198 195 199 // First scatter w.r.t. Z axis 196 // First scatter w.r.t. Z axis 200 G4double phi = G4UniformRand()*twopi; 197 G4double phi = G4UniformRand()*twopi; 201 G4double pxnew = p*std::sin(theta)*std::co 198 G4double pxnew = p*std::sin(theta)*std::cos(phi); 202 G4double pynew = p*std::sin(theta)*std::si 199 G4double pynew = p*std::sin(theta)*std::sin(phi); 203 G4double pznew = p*std::cos(theta); 200 G4double pznew = p*std::cos(theta); 204 201 205 // Rotate according to the direction of th 202 // Rotate according to the direction of the incident particle 206 if (px*px + py*py > 0) { 203 if (px*px + py*py > 0) { 207 G4double cost, sint, ph, cosp, sinp; 204 G4double cost, sint, ph, cosp, sinp; 208 cost = pz/p; 205 cost = pz/p; 209 sint = (std::sqrt(std::fabs((1-cost)*(1+ 206 sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2; 210 py < 0 ? ph = 3*halfpi : ph = halfpi; 207 py < 0 ? ph = 3*halfpi : ph = halfpi; 211 if (std::abs(px) > 0.000001*GeV) ph = st 208 if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px); 212 cosp = std::cos(ph); 209 cosp = std::cos(ph); 213 sinp = std::sin(ph); 210 sinp = std::sin(ph); 214 px = (cost*cosp*pxnew - sinp*pynew + sin 211 px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew); 215 py = (cost*sinp*pxnew + cosp*pynew + sin 212 py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew); 216 pz = (-sint*pxnew + cos 213 pz = (-sint*pxnew + cost*pznew); 217 } 214 } 218 else { 215 else { 219 px = pxnew; 216 px = pxnew; 220 py = pynew; 217 py = pynew; 221 pz = pznew; 218 pz = pznew; 222 } 219 } 223 220 224 if (verboseLevel > 1) { 221 if (verboseLevel > 1) { 225 G4cout << " AFTER SCATTER..." << G4endl 222 G4cout << " AFTER SCATTER..." << G4endl; 226 G4cout << " particle 1 momentum in CM " 223 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " " 227 << pz/GeV << " " << p/GeV << G4endl 224 << pz/GeV << " " << p/GeV << G4endl; 228 } 225 } 229 226 230 // Transform to lab system 227 // Transform to lab system 231 228 232 G4double E1pM2 = E1 + M2; 229 G4double E1pM2 = E1 + M2; 233 G4double betaCM = P/E1pM2; 230 G4double betaCM = P/E1pM2; 234 G4double betaCMx = Px/E1pM2; 231 G4double betaCMx = Px/E1pM2; 235 G4double betaCMy = Py/E1pM2; 232 G4double betaCMy = Py/E1pM2; 236 G4double betaCMz = Pz/E1pM2; 233 G4double betaCMz = Pz/E1pM2; 237 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E 234 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P); 238 235 239 if (verboseLevel > 1) { 236 if (verboseLevel > 1) { 240 G4cout << " betaCM " << betaCMx << " " 237 G4cout << " betaCM " << betaCMx << " " << betaCMy << " " 241 << betaCMz << " " << betaCM << G4 238 << betaCMz << " " << betaCM << G4endl; 242 G4cout << " gammaCM " << gammaCM << G4e 239 G4cout << " gammaCM " << gammaCM << G4endl; 243 } 240 } 244 241 245 // Now following GLOREN... 242 // Now following GLOREN... 246 243 247 G4double BETA[5], PA[5], PB[5]; 244 G4double BETA[5], PA[5], PB[5]; 248 BETA[1] = -betaCMx; 245 BETA[1] = -betaCMx; 249 BETA[2] = -betaCMy; 246 BETA[2] = -betaCMy; 250 BETA[3] = -betaCMz; 247 BETA[3] = -betaCMz; 251 BETA[4] = gammaCM; 248 BETA[4] = gammaCM; 252 249 253 //The incident particle... 250 //The incident particle... 254 251 255 PA[1] = px; 252 PA[1] = px; 256 PA[2] = py; 253 PA[2] = py; 257 PA[3] = pz; 254 PA[3] = pz; 258 PA[4] = std::sqrt(M1*M1 + p*p); 255 PA[4] = std::sqrt(M1*M1 + p*p); 259 256 260 G4double BETPA = BETA[1]*PA[1] + BETA[2]* 257 G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3]; 261 G4double BPGAM = (BETPA * BETA[4]/(BETA[4 258 G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4]; 262 259 263 PB[1] = PA[1] + BPGAM * BETA[1]; 260 PB[1] = PA[1] + BPGAM * BETA[1]; 264 PB[2] = PA[2] + BPGAM * BETA[2]; 261 PB[2] = PA[2] + BPGAM * BETA[2]; 265 PB[3] = PA[3] + BPGAM * BETA[3]; 262 PB[3] = PA[3] + BPGAM * BETA[3]; 266 PB[4] = (PA[4] - BETPA) * BETA[4]; 263 PB[4] = (PA[4] - BETPA) * BETA[4]; 267 264 268 G4DynamicParticle* newP = new G4DynamicPar 265 G4DynamicParticle* newP = new G4DynamicParticle; 269 newP->SetDefinition(aParticle->GetDefiniti 266 newP->SetDefinition(aParticle->GetDefinition()); 270 newP->SetMomentum(G4ThreeVector(PB[1], PB[ 267 newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3])); 271 268 272 //The target particle... 269 //The target particle... 273 270 274 PA[1] = -px; 271 PA[1] = -px; 275 PA[2] = -py; 272 PA[2] = -py; 276 PA[3] = -pz; 273 PA[3] = -pz; 277 PA[4] = std::sqrt(M2*M2 + p*p); 274 PA[4] = std::sqrt(M2*M2 + p*p); 278 275 279 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + B 276 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3]; 280 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - 277 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4]; 281 278 282 PB[1] = PA[1] + BPGAM * BETA[1]; 279 PB[1] = PA[1] + BPGAM * BETA[1]; 283 PB[2] = PA[2] + BPGAM * BETA[2]; 280 PB[2] = PA[2] + BPGAM * BETA[2]; 284 PB[3] = PA[3] + BPGAM * BETA[3]; 281 PB[3] = PA[3] + BPGAM * BETA[3]; 285 PB[4] = (PA[4] - BETPA) * BETA[4]; 282 PB[4] = (PA[4] - BETPA) * BETA[4]; 286 283 287 targetParticle->SetMomentum(G4ThreeVector( 284 targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3])); 288 285 289 if (verboseLevel > 1) { 286 if (verboseLevel > 1) { 290 G4cout << " particle 1 momentum in LAB 287 G4cout << " particle 1 momentum in LAB " 291 << newP->GetMomentum()*(1./GeV) 288 << newP->GetMomentum()*(1./GeV) 292 << " " << newP->GetTotalMomentum()/ 289 << " " << newP->GetTotalMomentum()/GeV << G4endl; 293 G4cout << " particle 2 momentum in LAB 290 G4cout << " particle 2 momentum in LAB " 294 << targetParticle->GetMomentum()*(1 291 << targetParticle->GetMomentum()*(1./GeV) 295 << " " << targetParticle->GetTotalM 292 << " " << targetParticle->GetTotalMomentum()/GeV << G4endl; 296 G4cout << " TOTAL momentum in LAB " 293 G4cout << " TOTAL momentum in LAB " 297 << (newP->GetMomentum()+targetParti 294 << (newP->GetMomentum()+targetParticle->GetMomentum())*(1./GeV) 298 << " " 295 << " " 299 << (newP->GetMomentum()+targetParti 296 << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV 300 << G4endl; 297 << G4endl; 301 } 298 } 302 299 303 theParticleChange.SetMomentumChange(newP-> 300 theParticleChange.SetMomentumChange(newP->GetMomentumDirection()); 304 theParticleChange.SetEnergyChange(newP->Ge 301 theParticleChange.SetEnergyChange(newP->GetKineticEnergy()); 305 delete newP; 302 delete newP; 306 theParticleChange.AddSecondary(targetParti << 303 theParticleChange.AddSecondary(targetParticle); 307 304 308 return &theParticleChange; 305 return &theParticleChange; 309 } 306 } 310 307 311 ////////////////////////////////////////////// 308 //////////////////////////////////////////////////////////////////// 312 // 309 // 313 // sample momentum transfer using Lab. momentu 310 // sample momentum transfer using Lab. momentum 314 311 315 G4double G4LEnp::SampleInvariantT(const G4Part 312 G4double G4LEnp::SampleInvariantT(const G4ParticleDefinition* p, 316 G4double plab, G4int , G4int ) 313 G4double plab, G4int , G4int ) 317 { 314 { 318 G4double nMass = p->GetPDGMass(); // 939.565 315 G4double nMass = p->GetPDGMass(); // 939.565346*MeV; 319 G4double ek = std::sqrt(plab*plab+nMass*nMas 316 G4double ek = std::sqrt(plab*plab+nMass*nMass) - nMass; 320 317 321 // Find energy bin 318 // Find energy bin 322 319 323 G4int je1 = 0; 320 G4int je1 = 0; 324 G4int je2 = NENERGY - 1; 321 G4int je2 = NENERGY - 1; 325 ek = ek/GeV; 322 ek = ek/GeV; 326 323 327 do 324 do 328 { 325 { 329 G4int midBin = (je1 + je2)/2; 326 G4int midBin = (je1 + je2)/2; 330 if (ek < elab[midBin]) 327 if (ek < elab[midBin]) 331 je2 = midBin; 328 je2 = midBin; 332 else 329 else 333 je1 = midBin; 330 je1 = midBin; 334 } while (je2 - je1 > 1); /* Loop checking, << 331 } while (je2 - je1 > 1); 335 332 336 G4double delab = elab[je2] - elab[je1]; 333 G4double delab = elab[je2] - elab[je1]; 337 334 338 // Sample the angle 335 // Sample the angle 339 336 340 G4double sample = G4UniformRand(); 337 G4double sample = G4UniformRand(); 341 G4int ke1 = 0; 338 G4int ke1 = 0; 342 G4int ke2 = NANGLE - 1; 339 G4int ke2 = NANGLE - 1; 343 G4double dsig = sig[je2][0] - sig[je1][0]; 340 G4double dsig = sig[je2][0] - sig[je1][0]; 344 G4double rc = dsig/delab; 341 G4double rc = dsig/delab; 345 G4double b = sig[je1][0] - rc*elab[je1]; 342 G4double b = sig[je1][0] - rc*elab[je1]; 346 G4double sigint1 = rc*ek + b; 343 G4double sigint1 = rc*ek + b; 347 G4double sigint2 = 0.; 344 G4double sigint2 = 0.; 348 345 349 do 346 do 350 { 347 { 351 G4int midBin = (ke1 + ke2)/2; 348 G4int midBin = (ke1 + ke2)/2; 352 dsig = sig[je2][midBin] - sig[je1][midBi 349 dsig = sig[je2][midBin] - sig[je1][midBin]; 353 rc = dsig/delab; 350 rc = dsig/delab; 354 b = sig[je1][midBin] - rc*elab[je1]; 351 b = sig[je1][midBin] - rc*elab[je1]; 355 G4double sigint = rc*ek + b; 352 G4double sigint = rc*ek + b; 356 353 357 if (sample < sigint) 354 if (sample < sigint) 358 { 355 { 359 ke2 = midBin; 356 ke2 = midBin; 360 sigint2 = sigint; 357 sigint2 = sigint; 361 } 358 } 362 else 359 else 363 { 360 { 364 ke1 = midBin; 361 ke1 = midBin; 365 sigint1 = sigint; 362 sigint1 = sigint; 366 } 363 } 367 } while (ke2 - ke1 > 1); /* Loop checking, << 364 } while (ke2 - ke1 > 1); 368 365 369 dsig = sigint2 - sigint1; 366 dsig = sigint2 - sigint1; 370 rc = 1./dsig; 367 rc = 1./dsig; 371 b = ke1 - rc*sigint1; 368 b = ke1 - rc*sigint1; 372 369 373 G4double kint = rc*sample + b; 370 G4double kint = rc*sample + b; 374 G4double theta = (0.5 + kint)*pi/180.; 371 G4double theta = (0.5 + kint)*pi/180.; 375 G4double t = 0.5*plab*plab*(1-std::cos(theta 372 G4double t = 0.5*plab*plab*(1-std::cos(theta)); 376 373 377 return t; 374 return t; 378 } 375 } 379 376 380 // end of file 377 // end of file 381 378