Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/binary_cascade/src/G4BinaryLightIonReaction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/binary_cascade/src/G4BinaryLightIonReaction.cc (Version 11.3.0) and /processes/hadronic/models/binary_cascade/src/G4BinaryLightIonReaction.cc (Version 9.6.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 #include <algorithm>                               26 #include <algorithm>
 27 #include <vector>                                  27 #include <vector>
 28 #include <cmath>                                   28 #include <cmath>
 29 #include <numeric>                                 29 #include <numeric>
 30                                                    30 
 31 #include "G4BinaryLightIonReaction.hh"             31 #include "G4BinaryLightIonReaction.hh"
 32 #include "G4PhysicalConstants.hh"                  32 #include "G4PhysicalConstants.hh"
 33 #include "G4SystemOfUnits.hh"                      33 #include "G4SystemOfUnits.hh"
 34 #include "G4LorentzVector.hh"                      34 #include "G4LorentzVector.hh"
 35 #include "G4LorentzRotation.hh"                    35 #include "G4LorentzRotation.hh"
 36 #include "G4ReactionProductVector.hh"              36 #include "G4ReactionProductVector.hh"
 37 #include "G4ping.hh"                               37 #include "G4ping.hh"
 38 #include "G4Delete.hh"                             38 #include "G4Delete.hh"
 39 #include "G4Neutron.hh"                            39 #include "G4Neutron.hh"
 40 #include "G4VNuclearDensity.hh"                    40 #include "G4VNuclearDensity.hh"
 41 #include "G4FermiMomentum.hh"                      41 #include "G4FermiMomentum.hh"
 42 #include "G4HadTmpUtil.hh"                         42 #include "G4HadTmpUtil.hh"
 43 #include "G4PreCompoundModel.hh"                   43 #include "G4PreCompoundModel.hh"
 44 #include "G4HadronicInteractionRegistry.hh"        44 #include "G4HadronicInteractionRegistry.hh"
 45 #include "G4Log.hh"                            << 
 46 #include "G4PhysicsModelCatalog.hh"            << 
 47 #include "G4HadronicParameters.hh"             << 
 48                                                << 
 49 G4int G4BinaryLightIonReaction::theBLIR_ID = - << 
 50                                                    45 
 51 //#define debug_G4BinaryLightIonReaction           46 //#define debug_G4BinaryLightIonReaction
 52 //#define debug_BLIR_finalstate                    47 //#define debug_BLIR_finalstate
 53 //#define debug_BLIR_result                    << 
 54                                                    48 
 55 G4BinaryLightIonReaction::G4BinaryLightIonReac     49 G4BinaryLightIonReaction::G4BinaryLightIonReaction(G4VPreCompoundModel* ptr)
 56 : G4HadronicInteraction("Binary Light Ion Casc     50 : G4HadronicInteraction("Binary Light Ion Cascade"),
 57   theProjectileFragmentation(ptr),                 51   theProjectileFragmentation(ptr),
 58   pA(0),pZ(0), tA(0),tZ(0),spectatorA(0),spect     52   pA(0),pZ(0), tA(0),tZ(0),spectatorA(0),spectatorZ(0),
 59   projectile3dNucleus(0),target3dNucleus(0)        53   projectile3dNucleus(0),target3dNucleus(0)
 60 {                                                  54 {
 61   if(!ptr) {                                       55   if(!ptr) {
 62     G4HadronicInteraction* p =                     56     G4HadronicInteraction* p =
 63       G4HadronicInteractionRegistry::Instance(     57       G4HadronicInteractionRegistry::Instance()->FindModel("PRECO");
 64     G4VPreCompoundModel* pre = static_cast<G4V     58     G4VPreCompoundModel* pre = static_cast<G4VPreCompoundModel*>(p);
 65     if(!pre) { pre = new G4PreCompoundModel();     59     if(!pre) { pre = new G4PreCompoundModel(); }
 66     theProjectileFragmentation = pre;              60     theProjectileFragmentation = pre;
 67   }                                                61   }
 68   theModel = new G4BinaryCascade(theProjectile     62   theModel = new G4BinaryCascade(theProjectileFragmentation);
 69   theHandler = theProjectileFragmentation->Get     63   theHandler = theProjectileFragmentation->GetExcitationHandler();
 70       theBLIR_ID = G4PhysicsModelCatalog::GetM <<  64 
 71   debug_G4BinaryLightIonReactionResults = G4Ha <<  65   debug_G4BinaryLightIonReactionResults=getenv("debug_G4BinaryLightIonReactionResults")!=0;
 72 }                                                  66 }
 73                                                    67 
 74 G4BinaryLightIonReaction::~G4BinaryLightIonRea     68 G4BinaryLightIonReaction::~G4BinaryLightIonReaction()
 75 {}                                                 69 {}
 76                                                    70 
 77 void G4BinaryLightIonReaction::ModelDescriptio     71 void G4BinaryLightIonReaction::ModelDescription(std::ostream& outFile) const
 78 {                                                  72 {
 79   outFile << "G4Binary Light Ion Cascade is an     73   outFile << "G4Binary Light Ion Cascade is an intra-nuclear cascade model\n"
 80       << "using G4BinaryCasacde to model the i     74       << "using G4BinaryCasacde to model the interaction of a light\n"
 81       << "nucleus with a nucleus.\n"               75       << "nucleus with a nucleus.\n"
 82       << "The lighter of the two nuclei is tre     76       << "The lighter of the two nuclei is treated like a set of projectiles\n"
 83       << "which are transported simultaneously <<  77       << "which are transported simultanously through the heavier nucleus.\n";
 84 }                                                  78 }
 85                                                    79 
 86 //--------------------------------------------     80 //--------------------------------------------------------------------------------
 87 struct ReactionProduct4Mom                         81 struct ReactionProduct4Mom
 88 {                                                  82 {
 89    G4LorentzVector operator()(G4LorentzVector      83    G4LorentzVector operator()(G4LorentzVector a,G4ReactionProduct* b) {return a + G4LorentzVector(b->GetMomentum(), b->GetTotalEnergy() );}
 90 };                                                 84 };
 91                                                    85 
 92 G4HadFinalState *G4BinaryLightIonReaction::        86 G4HadFinalState *G4BinaryLightIonReaction::
 93 ApplyYourself(const G4HadProjectile &aTrack, G     87 ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus & targetNucleus )
 94 {                                                  88 {
 95   if(debug_G4BinaryLightIonReactionResults) G4 <<  89   static G4int eventcounter=0;
                                                   >>  90   eventcounter++;
                                                   >>  91   if(getenv("BLICDEBUG") ) G4cerr << " ######### Binary Light Ion Reaction number starts ######### "<<eventcounter<<G4endl;
 96   G4ping debug("debug_G4BinaryLightIonReaction     92   G4ping debug("debug_G4BinaryLightIonReaction");
 97   pA=aTrack.GetDefinition()->GetBaryonNumber()     93   pA=aTrack.GetDefinition()->GetBaryonNumber();
 98   pZ=G4lrint(aTrack.GetDefinition()->GetPDGCha     94   pZ=G4lrint(aTrack.GetDefinition()->GetPDGCharge()/eplus);
 99   tA=targetNucleus.GetA_asInt();                   95   tA=targetNucleus.GetA_asInt();
100   tZ=targetNucleus.GetZ_asInt();                   96   tZ=targetNucleus.GetZ_asInt();
101   G4double timePrimary = aTrack.GetGlobalTime( <<  97 
102   G4LorentzVector mom(aTrack.Get4Momentum());      98   G4LorentzVector mom(aTrack.Get4Momentum());
103    //G4cout << "proj mom : " << mom << G4endl;     99    //G4cout << "proj mom : " << mom << G4endl;
104   G4LorentzRotation toBreit(mom.boostVector())    100   G4LorentzRotation toBreit(mom.boostVector());
105                                                   101 
106   G4bool swapped=SetLighterAsProjectile(mom, t    102   G4bool swapped=SetLighterAsProjectile(mom, toBreit);
107    //G4cout << "after swap, swapped? / mom " <    103    //G4cout << "after swap, swapped? / mom " << swapped << " / " << mom <<G4endl;
108   G4ReactionProductVector * result = 0;           104   G4ReactionProductVector * result = 0;
109   G4ReactionProductVector * cascaders=0; //new    105   G4ReactionProductVector * cascaders=0; //new G4ReactionProductVector;
110 //  G4double m_nucl(0);      // to check energ    106 //  G4double m_nucl(0);      // to check energy balance
111                                                   107 
112                                                   108 
113   //    G4double m1=G4ParticleTable::GetPartic    109   //    G4double m1=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(pZ,pA);
114   //    G4cout << "Entering the decision point    110   //    G4cout << "Entering the decision point "
115   //           << (mom.t()-mom.mag())/pA << "     111   //           << (mom.t()-mom.mag())/pA << " "
116   //     << pA<<" "<< pZ<<" "                     112   //     << pA<<" "<< pZ<<" "
117   //     << tA<<" "<< tZ<<G4endl                  113   //     << tA<<" "<< tZ<<G4endl
118   //     << " "<<mom.t()-mom.mag()<<" "           114   //     << " "<<mom.t()-mom.mag()<<" "
119   //     << mom.t()- m1<<G4endl;                  115   //     << mom.t()- m1<<G4endl;
120   if( (mom.t()-mom.mag())/pA < 50*MeV )           116   if( (mom.t()-mom.mag())/pA < 50*MeV )
121   {                                               117   {
122     //      G4cout << "Using pre-compound only    118     //      G4cout << "Using pre-compound only, E= "<<mom.t()-mom.mag()<<G4endl;
123     //      m_nucl = mom.mag();                   119     //      m_nucl = mom.mag();
124      cascaders=FuseNucleiAndPrompound(mom);    << 120       cascaders=FuseNucleiAndPrompound(mom);
125      if( !cascaders )                          << 
126      {                                         << 
127                                                << 
128               // abort!! happens for too low e << 
129                                                << 
130               theResult.Clear();               << 
131               theResult.SetStatusChange(isAliv << 
132               theResult.SetEnergyChange(aTrack << 
133               theResult.SetMomentumChange(aTra << 
134               return &theResult;               << 
135      }                                         << 
136   }                                               121   }
137   else                                            122   else
138   {                                               123   {
139      result=Interact(mom,toBreit);                124      result=Interact(mom,toBreit);
140                                                   125 
141      if(! result )                             << 126       if(! result )
142      {                                         << 127       {
143            // abort!!                          << 128           {
144                                                << 129             // abort!!
145            G4cerr << "G4BinaryLightIonReaction << 130 
146            G4cerr << " Primary " << aTrack.Get << 131             G4cerr << "G4BinaryLightIonReaction no final state for: " << G4endl;
147               << ", (A,Z)=(" << aTrack.GetDefi << 132             G4cerr << " Primary " << aTrack.GetDefinition()
148               << "," << aTrack.GetDefinition() << 133                << ", (A,Z)=(" << aTrack.GetDefinition()->GetBaryonNumber()
149               << ", kinetic energy " << aTrack << 134                << "," << aTrack.GetDefinition()->GetPDGCharge()/eplus << ") "
150               << G4endl;                       << 135                << ", kinetic energy " << aTrack.GetKineticEnergy()
151            G4cerr << " Target nucleus (A,Z)=(" << 136                << G4endl;
152                   <<  (swapped?pA:tA)  << ","  << 137             G4cerr << " Target nucleus (A,Z)=("
153                   << (swapped?pZ:tZ) << ")" << << 138                    <<  (swapped?pA:tA)  << ","
154            G4cerr << " if frequent, please sub << 139                    << (swapped?pZ:tZ) << ")" << G4endl;
155                        << G4endl << G4endl;    << 140             G4cerr << " if frequent, please submit above information as bug report"
156                                                << 141                   << G4endl << G4endl;
157            theResult.Clear();                  << 142 
158            theResult.SetStatusChange(isAlive); << 143             theResult.Clear();
159            theResult.SetEnergyChange(aTrack.Ge << 144             theResult.SetStatusChange(isAlive);
160            theResult.SetMomentumChange(aTrack. << 145             theResult.SetEnergyChange(aTrack.GetKineticEnergy());
161            return &theResult;                  << 146             theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
162      }                                         << 147             return &theResult;
163                                                << 148 
164          // Calculate excitation energy,       << 149          }
165      G4double theStatisticalExEnergy = GetProj << 150       }
166                                                << 151 
167                                                << 152     // Calculate excitation energy,
168      pInitialState = mom;                      << 153       G4double theStatisticalExEnergy = GetProjectileExcitation();
169         //G4cout << "BLIC: pInitialState from  << 154 
170      pInitialState.setT(pInitialState.getT() + << 155 
171     G4ParticleTable::GetParticleTable()->GetIo << 156     pInitialState = mom;
172       //G4cout << "BLIC: target nucleus added  << 157     //G4cout << "pInitialState from aTrack : " << pInitialState;
173                                                << 158     pInitialState.setT(pInitialState.getT() +
174      delete target3dNucleus;target3dNucleus=0; << 159          G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(tZ,tA));
175      delete projectile3dNucleus;projectile3dNu << 160       //G4cout << "target nucleus added : " << pInitialState << G4endl;
176                                                << 161 
177      G4ReactionProductVector * spectators= new << 162     delete target3dNucleus;target3dNucleus=0;
178                                                << 163     delete projectile3dNucleus;projectile3dNucleus=0;
179      cascaders = new G4ReactionProductVector;  << 
180                                                   164 
181      G4LorentzVector pspectators=SortResult(re << 165       G4ReactionProductVector * spectators= new G4ReactionProductVector;
182              // this also sets spectatorA and  << 
183                                                   166 
184      //      pFinalState=std::accumulate(casca << 167       cascaders = new G4ReactionProductVector;
185                                                   168 
186      std::vector<G4ReactionProduct *>::iterato << 169       G4LorentzVector pspectators=SortResult(result,spectators,cascaders);
187                                                   170 
188              // G4cout << "pInitialState, pFin << 171       //      pFinalState=std::accumulate(cascaders->begin(),cascaders->end(),pFinalState,ReactionProduct4Mom);
                                                   >> 172       std::vector<G4ReactionProduct *>::iterator iter;
                                                   >> 173 
                                                   >> 174       //G4cout << "pInitialState, pFinalState / pspectators"<< pInitialState << " / " << pFinalState << " / " << pspectators << G4endl;
189     //      if ( spectA-spectatorA !=0 || spec    175     //      if ( spectA-spectatorA !=0 || spectZ-spectatorZ !=0)
190     //      {                                     176     //      {
191     //          G4cout << "spect Nucl != spect    177     //          G4cout << "spect Nucl != spectators: nucl a,z; spect a,z" <<
192     //        spectatorA <<" "<< spectatorZ <<    178     //        spectatorA <<" "<< spectatorZ <<" ; " << spectA <<" "<< spectZ << G4endl;
193     //      }                                     179     //      }
194      delete result;                            << 180     delete result;
195      result=0;                                 << 181     result=0;
196      G4LorentzVector momentum(pInitialState-pF << 182     G4LorentzVector momentum(pInitialState-pFinalState);
197      G4int loopcount(0);                       << 183     G4int loopcount(0);
198         //G4cout << "BLIC: momentum, pspectato << 184     //G4cout << "momentum, pspectators : " << momentum << " / " << pspectators << G4endl;
199      while (std::abs(momentum.e()-pspectators. << 185     while (std::abs(momentum.e()-pspectators.e()) > 10*MeV)
200                                                << 186     {
201      {                                         << 187       G4LorentzVector pCorrect(pInitialState-pspectators);
202        G4LorentzVector pCorrect(pInitialState- << 188        //G4cout << "BIC nonconservation? (pInitialState-pFinalState) / spectators :" << momentum << " / " << pspectators << "pCorrect "<< pCorrect<< G4endl;
203         //G4cout << "BLIC:: BIC nonconservatio << 189       // Correct outgoing casacde particles.... to have momentum of (initial state - spectators)
204        // Correct outgoing casacde particles.. << 190       G4bool EnergyIsCorrect=EnergyAndMomentumCorrector(cascaders, pCorrect);
205        G4bool EnergyIsCorrect=EnergyAndMomentu << 191       if ( ! EnergyIsCorrect && debug_G4BinaryLightIonReactionResults)
206        if ( ! EnergyIsCorrect && debug_G4Binar << 192       {
207        {                                       << 193         G4cout << "Warning - G4BinaryLightIonReaction E/P correction for cascaders failed" << G4endl;
208          G4cout << "Warning - G4BinaryLightIon << 194       }
209        }                                       << 195       pFinalState=G4LorentzVector(0,0,0,0);
210        pFinalState=G4LorentzVector(0,0,0,0);   << 196       unsigned int i;
211        for(iter=cascaders->begin(); iter!=casc << 197       for(i=0; i<cascaders->size(); i++)
212        {                                       << 198       {
213          pFinalState += G4LorentzVector( (*ite << 199         pFinalState += G4LorentzVector( (*cascaders)[i]->GetMomentum(), (*cascaders)[i]->GetTotalEnergy() );
214        }                                       << 200       }
215        momentum=pInitialState-pFinalState;     << 201       momentum=pInitialState-pFinalState;
216        if (++loopcount > 10 )                  << 202       if (++loopcount > 10 )
                                                   >> 203       {
                                                   >> 204         if ( momentum.vect().mag() - momentum.e()> 10*keV  )
                                                   >> 205         {
                                                   >> 206           G4cerr << "G4BinaryLightIonReaction.cc: Cannot correct 4-momentum of cascade particles" << G4endl;
                                                   >> 207           throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCasacde::ApplyCollision()");
                                                   >> 208         } else {
                                                   >> 209           break;
                                                   >> 210         }
                                                   >> 211 
                                                   >> 212       }
                                                   >> 213     }
                                                   >> 214 
                                                   >> 215     if (spectatorA > 0 )
                                                   >> 216     {
                                                   >> 217        // check spectator momentum
                                                   >> 218        if ( momentum.vect().mag() - momentum.e()> 10*keV )
217        {                                          219        {
218            break;                              << 220 
                                                   >> 221           G4ReactionProductVector::iterator ispectator;
                                                   >> 222           for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++)
                                                   >> 223           {
                                                   >> 224              delete *ispectator;
                                                   >> 225           }
                                                   >> 226           delete spectators;
                                                   >> 227 
                                                   >> 228           G4cout << "G4BinaryLightIonReaction.cc: mom check: " <<  momentum
                                                   >> 229                 << " 3.mag "<< momentum.vect().mag() << G4endl
                                                   >> 230                 << " .. pInitialState/pFinalState/spectators " << pInitialState <<" "
                                                   >> 231                 << pFinalState << " " << pspectators << G4endl
                                                   >> 232                 << " .. A,Z " << spectatorA <<" "<< spectatorZ << G4endl;
                                                   >> 233           G4cout << "G4BinaryLightIonReaction invalid final state for: " << G4endl;
                                                   >> 234           G4cout << " Primary " << aTrack.GetDefinition()
                                                   >> 235                   << ", (A,Z)=(" << aTrack.GetDefinition()->GetBaryonNumber()
                                                   >> 236                   << "," << aTrack.GetDefinition()->GetPDGCharge()/eplus << ") "
                                                   >> 237                   << ", kinetic energy " << aTrack.GetKineticEnergy()
                                                   >> 238                   << G4endl;
                                                   >> 239           G4cout << " Target nucleus (A,Z)=(" <<  targetNucleus.GetA_asInt()
                                                   >> 240                       << "," << targetNucleus.GetZ_asInt() << ")" << G4endl;
                                                   >> 241           G4cout << " if frequent, please submit above information as bug report"
                                                   >> 242                 << G4endl << G4endl;
                                                   >> 243 
                                                   >> 244           theResult.Clear();
                                                   >> 245           theResult.SetStatusChange(isAlive);
                                                   >> 246           theResult.SetEnergyChange(aTrack.GetKineticEnergy());
                                                   >> 247           theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
                                                   >> 248           return &theResult;
219        }                                          249        }
220      }                                         << 
221                                                   250 
222 //      Check if Energy/Momemtum is now ok, if << 
223      if ( std::abs(momentum.e()-pspectators.e( << 
224      {                                         << 
225     for (iter=spectators->begin();iter!=specta << 
226     {                                          << 
227         delete *iter;                          << 
228     }                                          << 
229     delete spectators;                         << 
230      for(iter=cascaders->begin(); iter!=cascad << 
231      {                                         << 
232          delete *iter;                         << 
233      }                                         << 
234      delete cascaders;                         << 
235                                                << 
236      G4cout << "G4BinaryLightIonReaction.cc: m << 
237            << " initial - final " << momentum  << 
238            << " .. pInitialState/pFinalState/s << 
239            << pInitialState << G4endl          << 
240            << pFinalState << G4endl            << 
241            << pspectators << G4endl            << 
242            << " .. A,Z " << spectatorA <<" "<< << 
243      G4cout << "G4BinaryLightIonReaction inval << 
244      G4cout << " Primary " << aTrack.GetDefini << 
245              << ", (A,Z)=(" << aTrack.GetDefin << 
246              << "," << aTrack.GetDefinition()- << 
247              << ", kinetic energy " << aTrack. << 
248              << G4endl;                        << 
249      G4cout << " Target nucleus (A,Z)=(" <<  t << 
250                  << "," << targetNucleus.GetZ_ << 
251      G4cout << " if frequent, please submit ab << 
252            << G4endl << G4endl;                << 
253 #ifdef debug_G4BinaryLightIonReaction          << 
254           G4ExceptionDescription ed;           << 
255           ed << "G4BinaryLightIonreaction: Ter << 
256           G4Exception("G4BinaryLightIonreactio << 
257           ed);                                 << 
258                                                   251 
259 #endif                                         << 252        DeExciteSpectatorNucleus(spectators, cascaders, theStatisticalExEnergy, momentum);
260      theResult.Clear();                        << 253     }
261      theResult.SetStatusChange(isAlive);       << 
262      theResult.SetEnergyChange(aTrack.GetKinet << 
263      theResult.SetMomentumChange(aTrack.Get4Mo << 
264      return &theResult;                        << 
265                                                << 
266      }                                         << 
267        if (spectatorA > 0 )                    << 
268      {                                         << 
269            // DeExciteSpectatorNucleus() also  << 
270                DeExciteSpectatorNucleus(specta << 
271      } else {    // no spectators              << 
272          delete spectators;                    << 
273      }                                         << 
274   }                                               254   }
275   // Rotate to lab                                255   // Rotate to lab
276   G4LorentzRotation toZ;                          256   G4LorentzRotation toZ;
277   toZ.rotateZ(-1*mom.phi());                      257   toZ.rotateZ(-1*mom.phi());
278   toZ.rotateY(-1*mom.theta());                    258   toZ.rotateY(-1*mom.theta());
279   G4LorentzRotation toLab(toZ.inverse());         259   G4LorentzRotation toLab(toZ.inverse());
280                                                   260 
281   // Fill the particle change, while rotating.    261   // Fill the particle change, while rotating. Boost from projectile breit-frame in case we swapped.
282   // theResult.Clear();                           262   // theResult.Clear();
283   theResult.Clear();                              263   theResult.Clear();
284   theResult.SetStatusChange(stopAndKill);         264   theResult.SetStatusChange(stopAndKill);
285   G4LorentzVector ptot(0);                     << 265   G4double Etot(0);
286   #ifdef debug_BLIR_result                     << 266   size_t i=0;
287      G4LorentzVector p_raw;                    << 267   for(i=0; i<cascaders->size(); i++)
288   #endif                                       << 
289   //G4int i=0;                                 << 
290                                                << 
291         G4ReactionProductVector::iterator iter << 
292   for(iter=cascaders->begin(); iter!=cascaders << 
293   {                                               268   {
294     if((*iter)->GetNewlyAdded())               << 269     if((*cascaders)[i]->GetNewlyAdded())
295     {                                             270     {
296       G4DynamicParticle * aNewDP =             << 271       G4DynamicParticle * aNew =
297           new G4DynamicParticle((*iter)->GetDe << 272           new G4DynamicParticle((*cascaders)[i]->GetDefinition(),
298               (*iter)->GetTotalEnergy(),       << 273               (*cascaders)[i]->GetTotalEnergy(),
299               (*iter)->GetMomentum() );        << 274               (*cascaders)[i]->GetMomentum() );
300       G4LorentzVector tmp = aNewDP->Get4Moment << 275       G4LorentzVector tmp = aNew->Get4Momentum();
301              #ifdef debug_BLIR_result          << 
302            p_raw+= tmp;                        << 
303              #endif                            << 
304       if(swapped)                                 276       if(swapped)
305       {                                           277       {
306         tmp*=toBreit.inverse();                   278         tmp*=toBreit.inverse();
307         tmp.setVect(-tmp.vect());                 279         tmp.setVect(-tmp.vect());
308       }                                           280       }
309       tmp *= toLab;                               281       tmp *= toLab;
310       aNewDP->Set4Momentum(tmp);               << 282       aNew->Set4Momentum(tmp);
311       G4HadSecondary aNew = G4HadSecondary(aNe << 283       //G4cout << "result[" << i << "], 4vect: " << tmp << G4endl;
312             G4double time = 0;                 << 
313             //if(time < 0.0) { time = 0.0; }   << 
314             aNew.SetTime(timePrimary + time);  << 
315             //aNew.SetCreatorModelID((*iter)-> << 
316             aNew.SetCreatorModelID(theBLIR_ID) << 
317                                                << 
318       theResult.AddSecondary(aNew);               284       theResult.AddSecondary(aNew);
319       ptot += tmp;                             << 285       Etot += tmp.e();
320               //G4cout << "BLIC: Secondary " < << 286       //        G4cout << "LIBIC: Secondary " << aNew->GetDefinition()->GetParticleName()
321               //       <<" "<<  aNew->GetMomen << 287       //               <<" "<<  aNew->GetMomentum()
                                                   >> 288       //        <<" "<<  aNew->GetTotalEnergy()
                                                   >> 289       //        << G4endl;
322     }                                             290     }
323     delete *iter;                              << 291     delete (*cascaders)[i];
324   }                                               292   }
325   delete cascaders;                               293   delete cascaders;
326                                                   294 
327 #ifdef debug_BLIR_result                          295 #ifdef debug_BLIR_result
328   //G4cout << "Result analysis, secondaries "  << 296   G4cout << "Result analysis, secondaries" << theResult.GetNumberOfSecondaries() << G4endl;
329   //G4cout << "p_tot_raw " << p_raw << " sum p << 297   G4cout << " Energy conservation initial/primary/nucleus/final/delta(init-final) "
330   G4double m_nucl=  G4ParticleTable::GetPartic << 298         << aTrack.GetTotalEnergy() + m_nucl << aTrack.GetTotalEnergy() << m_nucl <<Etot
331           GetIonMass(targetNucleus.GetZ_asInt( << 299         << aTrack.GetTotalEnergy() + m_nucl - Etot;
332   // delete? tZ=targetNucleus.GetZ_asInt();    << 
333                                                << 
334   //G4cout << "BLIC Energy conservation initia << 
335    //     << aTrack.GetTotalEnergy()   + m_nuc << 
336    //     <<" "<< aTrack.GetTotalEnergy() + m_ << 
337   G4cout << "BLIC momentum conservation " << a << 
338       << " ptot " << ptot << " delta " << aTra << 
339       << "        3mom.mag() " << (aTrack.Get4 << 
340 #endif                                            300 #endif
341                                                   301 
342   if(debug_G4BinaryLightIonReactionResults) G4 << 302   if(getenv("BLICDEBUG") ) G4cerr << " ######### Binary Light Ion Reaction number ends ######### "<<eventcounter<<G4endl;
343                                                   303 
344   return &theResult;                              304   return &theResult;
345 }                                                 305 }
346                                                   306 
347 //--------------------------------------------    307 //--------------------------------------------------------------------------------
348                                                   308 
349 //********************************************    309 //****************************************************************************
350 G4bool G4BinaryLightIonReaction::EnergyAndMome    310 G4bool G4BinaryLightIonReaction::EnergyAndMomentumCorrector(
351     G4ReactionProductVector* Output, G4Lorentz    311     G4ReactionProductVector* Output, G4LorentzVector& TotalCollisionMom)
352 //********************************************    312 //****************************************************************************
353 {                                                 313 {
354   const int    nAttemptScale = 2500;              314   const int    nAttemptScale = 2500;
355   const double ErrLimit = 1.E-6;                  315   const double ErrLimit = 1.E-6;
356   if (Output->empty())                            316   if (Output->empty())
357     return TRUE;                                  317     return TRUE;
358   G4LorentzVector SumMom(0,0,0,0);                318   G4LorentzVector SumMom(0,0,0,0);
359   G4double        SumMass = 0;                    319   G4double        SumMass = 0;
360   G4double        TotalCollisionMass = TotalCo    320   G4double        TotalCollisionMass = TotalCollisionMom.m();
361   size_t i = 0;                                   321   size_t i = 0;
362   // Calculate sum hadron 4-momenta and summin    322   // Calculate sum hadron 4-momenta and summing hadron mass
363   for(i = 0; i < Output->size(); i++)             323   for(i = 0; i < Output->size(); i++)
364   {                                               324   {
365     SumMom  += G4LorentzVector((*Output)[i]->G    325     SumMom  += G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
366     SumMass += (*Output)[i]->GetDefinition()->    326     SumMass += (*Output)[i]->GetDefinition()->GetPDGMass();
367   }                                               327   }
368     // G4cout << " E/P corrector, SumMass, Sum    328     // G4cout << " E/P corrector, SumMass, SumMom.m2, TotalMass "
369     //       << SumMass <<" "<< SumMom.m2() <<    329     //       << SumMass <<" "<< SumMom.m2() <<" "<<TotalCollisionMass<< G4endl;
370   if (SumMass > TotalCollisionMass) return FAL    330   if (SumMass > TotalCollisionMass) return FALSE;
371   SumMass = SumMom.m2();                          331   SumMass = SumMom.m2();
372   if (SumMass < 0) return FALSE;                  332   if (SumMass < 0) return FALSE;
373   SumMass = std::sqrt(SumMass);                   333   SumMass = std::sqrt(SumMass);
374                                                   334 
375   // Compute c.m.s. hadron velocity and boost     335   // Compute c.m.s. hadron velocity and boost KTV to hadron c.m.s.
376   G4ThreeVector Beta = -SumMom.boostVector();     336   G4ThreeVector Beta = -SumMom.boostVector();
377         //G4cout << " == pre boost 2 "<< SumMo    337         //G4cout << " == pre boost 2 "<< SumMom.e()<< " "<< SumMom.mag()<<" "<< Beta <<G4endl;
378   //--old    Output->Boost(Beta);                 338   //--old    Output->Boost(Beta);
379   for(i = 0; i < Output->size(); i++)             339   for(i = 0; i < Output->size(); i++)
380   {                                               340   {
381     G4LorentzVector mom = G4LorentzVector((*Ou    341     G4LorentzVector mom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
382     mom *= Beta;                                  342     mom *= Beta;
383     (*Output)[i]->SetMomentum(mom.vect());        343     (*Output)[i]->SetMomentum(mom.vect());
384     (*Output)[i]->SetTotalEnergy(mom.e());        344     (*Output)[i]->SetTotalEnergy(mom.e());
385   }                                               345   }
386                                                   346 
387   // Scale total c.m.s. hadron energy (hadron     347   // Scale total c.m.s. hadron energy (hadron system mass).
388   // It should be equal interaction mass          348   // It should be equal interaction mass
389   G4double Scale = 0,OldScale=0;                  349   G4double Scale = 0,OldScale=0;
390   G4double factor = 1.;                           350   G4double factor = 1.;
391   G4int cAttempt = 0;                             351   G4int cAttempt = 0;
392   G4double Sum = 0;                               352   G4double Sum = 0;
393   G4bool success = false;                         353   G4bool success = false;
394   for(cAttempt = 0; cAttempt < nAttemptScale;     354   for(cAttempt = 0; cAttempt < nAttemptScale; cAttempt++)
395   {                                               355   {
396     Sum = 0;                                      356     Sum = 0;
397     for(i = 0; i < Output->size(); i++)           357     for(i = 0; i < Output->size(); i++)
398     {                                             358     {
399       G4LorentzVector HadronMom = G4LorentzVec    359       G4LorentzVector HadronMom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
400       HadronMom.setVect(HadronMom.vect()+ fact    360       HadronMom.setVect(HadronMom.vect()+ factor*Scale*HadronMom.vect());
401       G4double E = std::sqrt(HadronMom.vect().    361       G4double E = std::sqrt(HadronMom.vect().mag2() + sqr((*Output)[i]->GetDefinition()->GetPDGMass()));
402       HadronMom.setE(E);                          362       HadronMom.setE(E);
403       (*Output)[i]->SetMomentum(HadronMom.vect    363       (*Output)[i]->SetMomentum(HadronMom.vect());
404       (*Output)[i]->SetTotalEnergy(HadronMom.e    364       (*Output)[i]->SetTotalEnergy(HadronMom.e());
405       Sum += E;                                   365       Sum += E;
406     }                                             366     }
407     OldScale=Scale;                               367     OldScale=Scale;
408     Scale = TotalCollisionMass/Sum - 1;           368     Scale = TotalCollisionMass/Sum - 1;
409     //  G4cout << "E/P corr - " << cAttempt <<    369     //  G4cout << "E/P corr - " << cAttempt << " " << Scale << G4endl;
410     if (std::abs(Scale) <= ErrLimit               370     if (std::abs(Scale) <= ErrLimit
411         || OldScale == Scale)     // protect '    371         || OldScale == Scale)     // protect 'frozen' situation and divide by 0 in calculating new factor below
412     {                                             372     {
413       if (debug_G4BinaryLightIonReactionResult    373       if (debug_G4BinaryLightIonReactionResults) G4cout << "E/p corrector: " << cAttempt << G4endl;
414       success = true;                             374       success = true;
415       break;                                      375       break;
416     }                                             376     }
417     if ( cAttempt > 10 )                          377     if ( cAttempt > 10 )
418     {                                             378     {
419       //         G4cout << " speed it up? " <<    379       //         G4cout << " speed it up? " << std::abs(OldScale/(OldScale-Scale)) << G4endl;
420       factor=std::max(1.,G4Log(std::abs(OldSca << 380       factor=std::max(1.,std::log(std::abs(OldScale/(OldScale-Scale))));
421       //   G4cout << " ? factor ? " << factor     381       //   G4cout << " ? factor ? " << factor << G4endl;
422     }                                             382     }
423   }                                               383   }
424                                                   384 
425   if( (!success)  && debug_G4BinaryLightIonRea    385   if( (!success)  && debug_G4BinaryLightIonReactionResults)
426   {                                               386   {
427     G4cout << "G4G4BinaryLightIonReaction::Ene    387     G4cout << "G4G4BinaryLightIonReaction::EnergyAndMomentumCorrector - Warning"<<G4endl;
428     G4cout << "   Scale not unity at end of it    388     G4cout << "   Scale not unity at end of iteration loop: "<<TotalCollisionMass<<" "<<Sum<<" "<<Scale<<G4endl;
429     G4cout << "   Increase number of attempts     389     G4cout << "   Increase number of attempts or increase ERRLIMIT"<<G4endl;
430   }                                               390   }
431                                                   391 
432   // Compute c.m.s. interaction velocity and K    392   // Compute c.m.s. interaction velocity and KTV back boost
433   Beta = TotalCollisionMom.boostVector();         393   Beta = TotalCollisionMom.boostVector();
434   //--old    Output->Boost(Beta);                 394   //--old    Output->Boost(Beta);
435   for(i = 0; i < Output->size(); i++)             395   for(i = 0; i < Output->size(); i++)
436   {                                               396   {
437     G4LorentzVector mom = G4LorentzVector((*Ou    397     G4LorentzVector mom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
438     mom *= Beta;                                  398     mom *= Beta;
439     (*Output)[i]->SetMomentum(mom.vect());        399     (*Output)[i]->SetMomentum(mom.vect());
440     (*Output)[i]->SetTotalEnergy(mom.e());        400     (*Output)[i]->SetTotalEnergy(mom.e());
441   }                                               401   }
442   return TRUE;                                    402   return TRUE;
443 }                                                 403 }
444 G4bool G4BinaryLightIonReaction::SetLighterAsP    404 G4bool G4BinaryLightIonReaction::SetLighterAsProjectile(G4LorentzVector & mom,const G4LorentzRotation & toBreit)
445 {                                                 405 {
446    G4bool swapped = false;                        406    G4bool swapped = false;
447    if(tA<pA)                                      407    if(tA<pA)
448    {                                              408    {
449       swapped = true;                             409       swapped = true;
450       G4int tmp(0);                               410       G4int tmp(0);
451       tmp = tA; tA=pA; pA=tmp;                    411       tmp = tA; tA=pA; pA=tmp;
452       tmp = tZ; tZ=pZ; pZ=tmp;                    412       tmp = tZ; tZ=pZ; pZ=tmp;
453       G4double m1=G4ParticleTable::GetParticle    413       G4double m1=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(pZ,pA);
454       G4LorentzVector it(m1, G4ThreeVector(0,0    414       G4LorentzVector it(m1, G4ThreeVector(0,0,0));
455       mom = toBreit*it;                           415       mom = toBreit*it;
456    }                                              416    }
457    return swapped;                                417    return swapped;
458 }                                                 418 }
459 G4ReactionProductVector * G4BinaryLightIonReac    419 G4ReactionProductVector * G4BinaryLightIonReaction::FuseNucleiAndPrompound(const G4LorentzVector & mom)
460 {                                                 420 {
461    // Check if kinematically nuclei can fuse.  << 
462    G4double mFused=G4ParticleTable::GetParticl << 
463    G4double mTarget=G4ParticleTable::GetPartic << 
464    G4LorentzVector pCompound(mom.e()+mTarget,m << 
465    G4double m2Compound=pCompound.m2();         << 
466    if (m2Compound < sqr(mFused) ) {            << 
467      //G4cout << "G4BLIC: projectile p, mTarge << 
468      //    <<  " " << sqrt(m2Compound)<<  " "  << 
469      return 0;                                 << 
470    }                                           << 
471                                                << 
472    G4Fragment aPreFrag;                           421    G4Fragment aPreFrag;
473    aPreFrag.SetZandA_asInt(pZ+tZ, pA+tA);      << 422    aPreFrag.SetA(pA+tA);
                                                   >> 423    aPreFrag.SetZ(pZ+tZ);
474    aPreFrag.SetNumberOfParticles(pA);             424    aPreFrag.SetNumberOfParticles(pA);
475    aPreFrag.SetNumberOfCharged(pZ);               425    aPreFrag.SetNumberOfCharged(pZ);
476    aPreFrag.SetNumberOfHoles(0);                  426    aPreFrag.SetNumberOfHoles(0);
477    //GF FIXME: whyusing plop in z direction? t << 427    G4ThreeVector plop(0.,0., mom.vect().mag());
478    //G4ThreeVector plop(0.,0., mom.vect().mag( << 428    G4double m_nucl=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(tZ,tA);
479    //G4LorentzVector aL(mom.t()+mTarget, plop) << 429    G4LorentzVector aL(mom.t()+m_nucl, plop);
480    G4LorentzVector aL(mom.t()+mTarget,mom.vect << 
481    aPreFrag.SetMomentum(aL);                      430    aPreFrag.SetMomentum(aL);
                                                   >> 431    G4ParticleDefinition * preFragDef;
                                                   >> 432    preFragDef = G4ParticleTable::GetParticleTable()
                                                   >> 433    ->FindIon(pZ+tZ,pA+tA,0,pZ+tZ);
                                                   >> 434    aPreFrag.SetParticleDefinition(preFragDef);
482                                                   435 
483                                                << 436    //      G4cout << "Fragment INFO "<< pA+tA <<" "<<pZ+tZ<<" "
484          //G4cout << "Fragment INFO "<< pA+tA  << 437    //             << aL <<" "<<preFragDef->GetParticleName()<<G4endl;
485          //       << aL <<" "<<G4endl << aPreF << 
486    G4ReactionProductVector * cascaders = thePr    438    G4ReactionProductVector * cascaders = theProjectileFragmentation->DeExcite(aPreFrag);
487    //G4double tSum = 0;                           439    //G4double tSum = 0;
488    for(size_t count = 0; count<cascaders->size    440    for(size_t count = 0; count<cascaders->size(); count++)
489    {                                              441    {
490       cascaders->operator[](count)->SetNewlyAd    442       cascaders->operator[](count)->SetNewlyAdded(true);
491       //tSum += cascaders->operator[](count)->    443       //tSum += cascaders->operator[](count)->GetKineticEnergy();
492    }                                              444    }
493    //       G4cout << "Exiting pre-compound on    445    //       G4cout << "Exiting pre-compound only, E= "<<tSum<<G4endl;
494    return cascaders;                              446    return cascaders;
495 }                                                 447 }
496 G4ReactionProductVector * G4BinaryLightIonReac    448 G4ReactionProductVector * G4BinaryLightIonReaction::Interact(G4LorentzVector & mom, const G4LorentzRotation & toBreit)
497 {                                                 449 {
498       G4ReactionProductVector * result = 0;       450       G4ReactionProductVector * result = 0;
499       G4double projectileMass(0);                 451       G4double projectileMass(0);
500       G4LorentzVector it;                         452       G4LorentzVector it;
501                                                   453 
502       G4int tryCount(0);                          454       G4int tryCount(0);
503       do                                          455       do
504       {                                           456       {
505          ++tryCount;                              457          ++tryCount;
506          projectile3dNucleus = new G4Fancy3DNu    458          projectile3dNucleus = new G4Fancy3DNucleus;
507          projectile3dNucleus->Init(pA, pZ);       459          projectile3dNucleus->Init(pA, pZ);
508          projectile3dNucleus->CenterNucleons()    460          projectile3dNucleus->CenterNucleons();
509          projectileMass=G4ParticleTable::GetPa    461          projectileMass=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(
510                projectile3dNucleus->GetCharge(    462                projectile3dNucleus->GetCharge(),projectile3dNucleus->GetMassNumber());
511          it=toBreit * G4LorentzVector(projecti    463          it=toBreit * G4LorentzVector(projectileMass,G4ThreeVector(0,0,0));
512                                                   464 
513          target3dNucleus = new G4Fancy3DNucleu    465          target3dNucleus = new G4Fancy3DNucleus;
514          target3dNucleus->Init(tA, tZ);           466          target3dNucleus->Init(tA, tZ);
515          G4double impactMax = target3dNucleus-    467          G4double impactMax = target3dNucleus->GetOuterRadius()+projectile3dNucleus->GetOuterRadius();
516          //        G4cout << "out radius - nuc    468          //        G4cout << "out radius - nucleus - projectile " << target3dNucleus->GetOuterRadius()/fermi << " - " << projectile3dNucleus->GetOuterRadius()/fermi << G4endl;
517          G4double aX=(2.*G4UniformRand()-1.)*i    469          G4double aX=(2.*G4UniformRand()-1.)*impactMax;
518          G4double aY=(2.*G4UniformRand()-1.)*i    470          G4double aY=(2.*G4UniformRand()-1.)*impactMax;
519          G4ThreeVector pos(aX, aY, -2.*impactM    471          G4ThreeVector pos(aX, aY, -2.*impactMax-5.*fermi);
520                                                   472 
521          G4KineticTrackVector * initalState =     473          G4KineticTrackVector * initalState = new G4KineticTrackVector;
522          projectile3dNucleus->StartLoop();        474          projectile3dNucleus->StartLoop();
523          G4Nucleon * aNuc;                        475          G4Nucleon * aNuc;
524          G4LorentzVector tmpV(0,0,0,0);           476          G4LorentzVector tmpV(0,0,0,0);
525          #ifdef debug_BLIR_finalstate          << 
526              G4LorentzVector pinitial;         << 
527          #endif                                << 
528          G4LorentzVector nucleonMom(1./pA*mom)    477          G4LorentzVector nucleonMom(1./pA*mom);
529          nucleonMom.setZ(nucleonMom.vect().mag    478          nucleonMom.setZ(nucleonMom.vect().mag());
530          nucleonMom.setX(0);                      479          nucleonMom.setX(0);
531          nucleonMom.setY(0);                      480          nucleonMom.setY(0);
532          theFermi.Init(pA,pZ);                    481          theFermi.Init(pA,pZ);
533          while( (aNuc=projectile3dNucleus->Get << 482          while( (aNuc=projectile3dNucleus->GetNextNucleon()) )
534          {                                        483          {
535             G4LorentzVector p4 = aNuc->GetMome    484             G4LorentzVector p4 = aNuc->GetMomentum();
536             tmpV+=p4;                             485             tmpV+=p4;
537             G4ThreeVector nucleonPosition(aNuc    486             G4ThreeVector nucleonPosition(aNuc->GetPosition());
538             G4double density=(projectile3dNucl    487             G4double density=(projectile3dNucleus->GetNuclearDensity())->GetDensity(nucleonPosition);
539             nucleonPosition += pos;               488             nucleonPosition += pos;
540             G4KineticTrack * it1 = new G4Kinet    489             G4KineticTrack * it1 = new G4KineticTrack(aNuc, nucleonPosition, nucleonMom );
541             it1->SetState(G4KineticTrack::outs    490             it1->SetState(G4KineticTrack::outside);
542             G4double pfermi= theFermi.GetFermi    491             G4double pfermi= theFermi.GetFermiMomentum(density);
543             G4double mass = aNuc->GetDefinitio    492             G4double mass = aNuc->GetDefinition()->GetPDGMass();
544             G4double Efermi= std::sqrt( sqr(ma    493             G4double Efermi= std::sqrt( sqr(mass) + sqr(pfermi)) - mass;
545             it1->SetProjectilePotential(-Eferm    494             it1->SetProjectilePotential(-Efermi);
546             initalState->push_back(it1);          495             initalState->push_back(it1);
547             #ifdef debug_BLIR_finalstate       << 
548                pinitial += it1->Get4Momentum() << 
549             #endif                             << 
550          }                                        496          }
551                                                   497 
552          result=theModel->Propagate(initalStat    498          result=theModel->Propagate(initalState, target3dNucleus);
553          #ifdef debug_BLIR_finalstate          << 
554            if( result && result->size()>0)     << 
555            {                                   << 
556      G4cout << "  Cascade result " << G4endl;  << 
557              G4LorentzVector presult;          << 
558              G4ReactionProductVector::iterator << 
559              G4ReactionProduct xp;             << 
560              for (iter=result->begin(); iter ! << 
561              {                                 << 
562               presult += G4LorentzVector((*ite << 
563         G4cout << (*iter)->GetDefinition()->Ge << 
564         << "("<< (*iter)->GetMomentum().x()<<" << 
565         <<    (*iter)->GetMomentum().y()<<","  << 
566         <<    (*iter)->GetMomentum().z()<<";"  << 
567         <<    (*iter)->GetTotalEnergy() <<")"< << 
568              }                                 << 
569                                                << 
570             G4cout << "BLIC check result :  in << 
571                  << " final " << presult       << 
572                  << " IF - FF " << pinitial +G << 
573                                                << 
574            }                                   << 
575          #endif                                << 
576          if( result && result->size()==0)         499          if( result && result->size()==0)
577          {                                        500          {
578             delete result;                        501             delete result;
579             result=0;                             502             result=0;
580          }                                        503          }
581          if ( ! result )                          504          if ( ! result )
582          {                                        505          {
583             delete target3dNucleus;               506             delete target3dNucleus;
584             delete projectile3dNucleus;           507             delete projectile3dNucleus;
585          }                                        508          }
586                                                   509 
587          // std::for_each(initalState->begin()    510          // std::for_each(initalState->begin(), initalState->end(), Delete<G4KineticTrack>());
588          // delete initalState;                   511          // delete initalState;
589                                                   512 
590       } while (! result && tryCount< 150);   / << 513       } while (! result && tryCount< 150);
591       return result;                              514       return result;
592 }                                                 515 }
593 G4double G4BinaryLightIonReaction::GetProjecti    516 G4double G4BinaryLightIonReaction::GetProjectileExcitation()
594 {                                                 517 {
                                                   >> 518    spectatorA=spectatorZ=0;
595                                                   519 
596       G4Nucleon * aNuc;                           520       G4Nucleon * aNuc;
                                                   >> 521       //       targetNucleus->StartLoop();
                                                   >> 522       //       while( (aNuc=targetNucleus->GetNextNucleon()) )
                                                   >> 523       //       {
                                                   >> 524       //         G4cout << " tgt Nucleon : " << aNuc->GetDefinition()->GetParticleName() <<" "<< aNuc->AreYouHit() <<" "<<aNuc->GetMomentum()<<G4endl;
                                                   >> 525       //       }
597       // the projectileNucleus excitation ener    526       // the projectileNucleus excitation energy estimate...
598       G4double theStatisticalExEnergy = 0;        527       G4double theStatisticalExEnergy = 0;
599       projectile3dNucleus->StartLoop();           528       projectile3dNucleus->StartLoop();
600       while( (aNuc=projectile3dNucleus->GetNex << 529       while( (aNuc=projectile3dNucleus->GetNextNucleon()) )
601       {                                           530       {
602                 //G4cout << " Nucleon : " << a << 531          //        G4cout << " Nucleon : " << aNuc->GetDefinition()->GetParticleName() <<" "<< aNuc->AreYouHit() <<" "<<aNuc->GetMomentum()<<G4endl;
603          if(aNuc->AreYouHit()) {               << 532          if(!aNuc->AreYouHit())
                                                   >> 533          {
                                                   >> 534             spectatorA++;
                                                   >> 535             spectatorZ+=G4lrint(aNuc->GetDefinition()->GetPDGCharge()/eplus);
                                                   >> 536          }
                                                   >> 537          else
                                                   >> 538          {
604             G4ThreeVector aPosition(aNuc->GetP    539             G4ThreeVector aPosition(aNuc->GetPosition());
605             G4double localDensity = projectile    540             G4double localDensity = projectile3dNucleus->GetNuclearDensity()->GetDensity(aPosition);
606             G4double localPfermi = theFermi.Ge    541             G4double localPfermi = theFermi.GetFermiMomentum(localDensity);
607             G4double nucMass = aNuc->GetDefini    542             G4double nucMass = aNuc->GetDefinition()->GetPDGMass();
608             G4double localFermiEnergy = std::s    543             G4double localFermiEnergy = std::sqrt(nucMass*nucMass + localPfermi*localPfermi) - nucMass;
609             G4double deltaE = localFermiEnergy    544             G4double deltaE = localFermiEnergy - (aNuc->GetMomentum().t()-aNuc->GetMomentum().mag());
610             theStatisticalExEnergy += deltaE;     545             theStatisticalExEnergy += deltaE;
611          }                                        546          }
612       }                                           547       }
613       return theStatisticalExEnergy;              548       return theStatisticalExEnergy;
614 }                                                 549 }
615                                                   550 
616 G4LorentzVector G4BinaryLightIonReaction::Sort    551 G4LorentzVector G4BinaryLightIonReaction::SortResult(G4ReactionProductVector * result, G4ReactionProductVector * spectators,G4ReactionProductVector * cascaders)
617 {                                                 552 {
618    unsigned int i(0);                             553    unsigned int i(0);
619    spectatorA=spectatorZ=0;                    << 554    //      G4int spectA(0),spectZ(0);
620    G4LorentzVector pspectators(0,0,0,0);          555    G4LorentzVector pspectators(0,0,0,0);
621    pFinalState=G4LorentzVector(0,0,0,0);          556    pFinalState=G4LorentzVector(0,0,0,0);
622    for(i=0; i<result->size(); i++)                557    for(i=0; i<result->size(); i++)
623    {                                              558    {
624       if( (*result)[i]->GetNewlyAdded() )         559       if( (*result)[i]->GetNewlyAdded() )
625       {                                           560       {
626          pFinalState += G4LorentzVector( (*res    561          pFinalState += G4LorentzVector( (*result)[i]->GetMomentum(), (*result)[i]->GetTotalEnergy() );
627          cascaders->push_back((*result)[i]);      562          cascaders->push_back((*result)[i]);
628       }                                           563       }
629       else {                                      564       else {
630          //          G4cout <<" spectator ...     565          //          G4cout <<" spectator ... ";
631          pspectators += G4LorentzVector( (*res    566          pspectators += G4LorentzVector( (*result)[i]->GetMomentum(), (*result)[i]->GetTotalEnergy() );
632          spectators->push_back((*result)[i]);     567          spectators->push_back((*result)[i]);
633          spectatorA++;                         << 568          //   spectA++;
634          spectatorZ+= G4lrint((*result)[i]->Ge << 569          //   spectZ+= G4lrint((*result)[i]->GetDefinition()->GetPDGCharge()/eplus);
635       }                                           570       }
636                                                   571 
637       //       G4cout << (*result)[i]<< " "       572       //       G4cout << (*result)[i]<< " "
638       //        << (*result)[i]->GetDefinition    573       //        << (*result)[i]->GetDefinition()->GetParticleName() << " "
639       //        << (*result)[i]->GetMomentum()    574       //        << (*result)[i]->GetMomentum()<< " "
640       //        << (*result)[i]->GetTotalEnerg    575       //        << (*result)[i]->GetTotalEnergy() << G4endl;
641    }                                              576    }
642       //G4cout << "pFinalState / pspectators,  << 577    //G4cout << "pFinalState / pspectators" << pFinalState << " / " << pspectators << G4endl;
643       //    << " (" << spectatorA << ", "<< sp << 
644                                                << 
645    return pspectators;                            578    return pspectators;
646 }                                                 579 }
647                                                   580 
648 void G4BinaryLightIonReaction::DeExciteSpectat    581 void G4BinaryLightIonReaction::DeExciteSpectatorNucleus(G4ReactionProductVector * spectators, G4ReactionProductVector * cascaders,
649                                                   582                                                  G4double theStatisticalExEnergy, G4LorentzVector & pSpectators)
650 {                                                 583 {
651    // call precompound model                      584    // call precompound model
652    G4ReactionProductVector * proFrag = 0;         585    G4ReactionProductVector * proFrag = 0;
653    G4LorentzVector pFragment(0.,0.,0.,0.);        586    G4LorentzVector pFragment(0.,0.,0.,0.);
654    //      G4cout << " == pre boost 1 "<< mome    587    //      G4cout << " == pre boost 1 "<< momentum.e()<< " "<< momentum.mag()<<G4endl;
655    G4LorentzRotation boost_fragments;             588    G4LorentzRotation boost_fragments;
656    //      G4cout << " == post boost 1 "<< mom    589    //      G4cout << " == post boost 1 "<< momentum.e()<< " "<< momentum.mag()<<G4endl;
657    //    G4LorentzRotation boost_spectator_mom    590    //    G4LorentzRotation boost_spectator_mom(-momentum.boostVector());
658    //     G4cout << "- momentum " << boost_spe    591    //     G4cout << "- momentum " << boost_spectator_mom * momentum << G4endl;
659    G4LorentzVector pFragments(0,0,0,0);           592    G4LorentzVector pFragments(0,0,0,0);
660                                                   593 
661    if(spectatorZ>0 && spectatorA>1)               594    if(spectatorZ>0 && spectatorA>1)
662    {                                              595    {
663       //  Make the fragment                       596       //  Make the fragment
664       G4Fragment aProRes;                         597       G4Fragment aProRes;
665       aProRes.SetZandA_asInt(spectatorZ, spect << 598       aProRes.SetA(spectatorA);
                                                   >> 599       aProRes.SetZ(spectatorZ);
666       aProRes.SetNumberOfParticles(0);            600       aProRes.SetNumberOfParticles(0);
667       aProRes.SetNumberOfCharged(0);              601       aProRes.SetNumberOfCharged(0);
668       aProRes.SetNumberOfHoles(pA-spectatorA);    602       aProRes.SetNumberOfHoles(pA-spectatorA);
669       G4double mFragment=G4ParticleTable::GetP    603       G4double mFragment=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(spectatorZ,spectatorA);
670       pFragment=G4LorentzVector(0,0,0,mFragmen    604       pFragment=G4LorentzVector(0,0,0,mFragment+std::max(0.,theStatisticalExEnergy) );
671       aProRes.SetMomentum(pFragment);             605       aProRes.SetMomentum(pFragment);
                                                   >> 606       G4ParticleDefinition * resDef;
                                                   >> 607       resDef = G4ParticleTable::GetParticleTable()->FindIon(spectatorZ,spectatorA,0,spectatorZ);
                                                   >> 608       aProRes.SetParticleDefinition(resDef);
672                                                   609 
673       proFrag = theHandler->BreakItUp(aProRes)    610       proFrag = theHandler->BreakItUp(aProRes);
674                                                   611 
675       boost_fragments = G4LorentzRotation(pSpe    612       boost_fragments = G4LorentzRotation(pSpectators.boostVector());
676                                                   613 
677       //     G4cout << " Fragment a,z, Mass Fr    614       //     G4cout << " Fragment a,z, Mass Fragment, mass spect-mom, exitationE "
678       //       << spectatorA <<" "<< spectator    615       //       << spectatorA <<" "<< spectatorZ <<" "<< mFragment <<" "
679       //       << momentum.mag() <<" "<< momen    616       //       << momentum.mag() <<" "<< momentum.mag() - mFragment
680       //       << " "<<theStatisticalExEnergy     617       //       << " "<<theStatisticalExEnergy
681       //       << " "<< boost_fragments*pFragm    618       //       << " "<< boost_fragments*pFragment<< G4endl;
682       G4ReactionProductVector::iterator ispect    619       G4ReactionProductVector::iterator ispectator;
683       for (ispectator=spectators->begin();ispe    620       for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++)
684       {                                           621       {
685          delete *ispectator;                      622          delete *ispectator;
686       }                                           623       }
687    }                                              624    }
688    else if(spectatorA!=0)                         625    else if(spectatorA!=0)
689    {                                              626    {
690      G4ReactionProductVector::iterator ispecta << 627       G4ReactionProductVector::iterator ispectator;
691      for (ispectator=spectators->begin();ispec << 628       for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++)
692       {                                           629       {
693          (*ispectator)->SetNewlyAdded(true);      630          (*ispectator)->SetNewlyAdded(true);
694          cascaders->push_back(*ispectator);       631          cascaders->push_back(*ispectator);
695          pFinalState+=G4LorentzVector((*ispect << 632          pFragments+=G4LorentzVector((*ispectator)->GetMomentum(),(*ispectator)->GetTotalEnergy());
696                   //G4cout << "BLIC: spectator << 633          //         G4cout << "from spectator "
697                   // << (*ispectator)->GetDefi << 634          //          << (*ispectator)->GetDefinition()->GetParticleName() << " "
698                   // << (*ispectator)->GetMome << 635          //          << (*ispectator)->GetMomentum()<< " "
699                   // << (*ispectator)->GetTota << 636          //          << (*ispectator)->GetTotalEnergy() << G4endl;
700       }                                           637       }
701                                                << 
702    }                                              638    }
703    // / if (spectators)                           639    // / if (spectators)
704    delete spectators;                             640    delete spectators;
705                                                   641 
706    // collect the evaporation part and boost t    642    // collect the evaporation part and boost to spectator frame
707    G4ReactionProductVector::iterator ii;          643    G4ReactionProductVector::iterator ii;
708    if(proFrag)                                    644    if(proFrag)
709    {                                              645    {
710       for(ii=proFrag->begin(); ii!=proFrag->en    646       for(ii=proFrag->begin(); ii!=proFrag->end(); ii++)
711       {                                           647       {
712          (*ii)->SetNewlyAdded(true);              648          (*ii)->SetNewlyAdded(true);
713          G4LorentzVector tmp((*ii)->GetMomentu    649          G4LorentzVector tmp((*ii)->GetMomentum(),(*ii)->GetTotalEnergy());
714          tmp *= boost_fragments;                  650          tmp *= boost_fragments;
715          (*ii)->SetMomentum(tmp.vect());          651          (*ii)->SetMomentum(tmp.vect());
716          (*ii)->SetTotalEnergy(tmp.e());          652          (*ii)->SetTotalEnergy(tmp.e());
717          //      result->push_back(*ii);          653          //      result->push_back(*ii);
718          pFragments += tmp;                       654          pFragments += tmp;
719       }                                           655       }
720    }                                              656    }
721                                                   657 
722    //    G4cout << "Fragmented p, momentum, de    658    //    G4cout << "Fragmented p, momentum, delta " << pFragments <<" "<<momentum
723    //            <<" "<< pFragments-momentum <    659    //            <<" "<< pFragments-momentum << G4endl;
724                                                   660 
725    //  correct p/E of Cascade secondaries         661    //  correct p/E of Cascade secondaries
726    G4LorentzVector pCas=pInitialState - pFragm    662    G4LorentzVector pCas=pInitialState - pFragments;
727                                                   663 
728        //G4cout <<"BLIC: Going to correct from << 664    //G4cout <<" Going to correct from " << pFinalState << " to " << pCas << G4endl;
729    //  the creation of excited fragment did vi << 
730    G4bool EnergyIsCorrect=EnergyAndMomentumCor    665    G4bool EnergyIsCorrect=EnergyAndMomentumCorrector(cascaders, pCas);
731    if ( ! EnergyIsCorrect && debug_G4BinaryLig    666    if ( ! EnergyIsCorrect && debug_G4BinaryLightIonReactionResults)
732    {                                              667    {
733       G4cout << "G4BinaryLightIonReaction E/P     668       G4cout << "G4BinaryLightIonReaction E/P correction for nucleus failed, will try to correct overall" << G4endl;
734    }                                              669    }
735                                                   670 
736    //  Add deexcitation secondaries               671    //  Add deexcitation secondaries
737    if(proFrag)                                    672    if(proFrag)
738    {                                              673    {
739       for(ii=proFrag->begin(); ii!=proFrag->en    674       for(ii=proFrag->begin(); ii!=proFrag->end(); ii++)
740       {                                           675       {
741          cascaders->push_back(*ii);               676          cascaders->push_back(*ii);
742       }                                           677       }
743       delete proFrag;                             678       delete proFrag;
744    }                                              679    }
745       //G4cout << "EnergyIsCorrect? " << Energ << 680    //G4cout << "EnergyIsCorrect? " << EnergyIsCorrect << G4endl;
746    if ( ! EnergyIsCorrect )                       681    if ( ! EnergyIsCorrect )
747    {                                              682    {
748          // G4cout <<" ! EnergyIsCorrect " <<  << 683       //G4cout <<" ! EnergyIsCorrect " << pFinalState << " to " << pInitialState << G4endl;
749       if (! EnergyAndMomentumCorrector(cascade    684       if (! EnergyAndMomentumCorrector(cascaders,pInitialState))
750       {                                           685       {
751          if(debug_G4BinaryLightIonReactionResu    686          if(debug_G4BinaryLightIonReactionResults)
752             G4cout << "G4BinaryLightIonReactio    687             G4cout << "G4BinaryLightIonReaction E/P corrections failed" << G4endl;
753       }                                           688       }
754    }                                              689    }
755                                                   690 
756 }                                                 691 }
757                                                   692 
758                                                   693