Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 #include <algorithm> << 27 #include <vector> << 28 #include <cmath> << 29 #include <numeric> << 30 << 31 #include "G4BinaryLightIonReaction.hh" 23 #include "G4BinaryLightIonReaction.hh" 32 #include "G4PhysicalConstants.hh" << 33 #include "G4SystemOfUnits.hh" << 34 #include "G4LorentzVector.hh" 24 #include "G4LorentzVector.hh" 35 #include "G4LorentzRotation.hh" 25 #include "G4LorentzRotation.hh" >> 26 #include <algorithm> 36 #include "G4ReactionProductVector.hh" 27 #include "G4ReactionProductVector.hh" >> 28 #include <vector> 37 #include "G4ping.hh" 29 #include "G4ping.hh" 38 #include "G4Delete.hh" 30 #include "G4Delete.hh" 39 #include "G4Neutron.hh" 31 #include "G4Neutron.hh" 40 #include "G4VNuclearDensity.hh" 32 #include "G4VNuclearDensity.hh" 41 #include "G4FermiMomentum.hh" 33 #include "G4FermiMomentum.hh" 42 #include "G4HadTmpUtil.hh" 34 #include "G4HadTmpUtil.hh" 43 #include "G4PreCompoundModel.hh" << 35 44 #include "G4HadronicInteractionRegistry.hh" << 36 G4BinaryLightIonReaction::G4BinaryLightIonReaction() 45 #include "G4Log.hh" << 37 : theModel(), theHandler(), theProjectileFragmentation(&theHandler) {} 46 #include "G4PhysicsModelCatalog.hh" << 38 47 #include "G4HadronicParameters.hh" << 39 G4HadFinalState *G4BinaryLightIonReaction:: 48 << 40 ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus & targetNucleus ) 49 G4int G4BinaryLightIonReaction::theBLIR_ID = - << 41 { 50 << 42 static G4int eventcounter=0; 51 //#define debug_G4BinaryLightIonReaction << 43 eventcounter++; 52 //#define debug_BLIR_finalstate << 44 if(getenv("BLICDEBUG") ) G4cerr << " ######### Binary Light Ion Reaction number starts ######### "<<eventcounter<<G4endl; 53 //#define debug_BLIR_result << 45 G4ping debug("debug_G4BinaryLightIonReaction"); 54 << 46 G4double a1=aTrack.GetDefinition()->GetBaryonNumber(); 55 G4BinaryLightIonReaction::G4BinaryLightIonReac << 47 G4double z1=aTrack.GetDefinition()->GetPDGCharge(); 56 : G4HadronicInteraction("Binary Light Ion Casc << 48 G4double a2=targetNucleus.GetN(); 57 theProjectileFragmentation(ptr), << 49 G4double z2=targetNucleus.GetZ(); 58 pA(0),pZ(0), tA(0),tZ(0),spectatorA(0),spect << 50 debug.push_back(a1); 59 projectile3dNucleus(0),target3dNucleus(0) << 51 debug.push_back(z1); 60 { << 52 debug.push_back(a2); 61 if(!ptr) { << 53 debug.push_back(z2); 62 G4HadronicInteraction* p = << 54 // debug.push_back(m2); 63 G4HadronicInteractionRegistry::Instance( << 55 G4LorentzVector mom(aTrack.Get4Momentum()); 64 G4VPreCompoundModel* pre = static_cast<G4V << 56 debug.push_back(mom); 65 if(!pre) { pre = new G4PreCompoundModel(); << 57 debug.dump(); 66 theProjectileFragmentation = pre; << 58 G4LorentzRotation toBreit(mom.boostVector()); 67 } << 59 68 theModel = new G4BinaryCascade(theProjectile << 60 G4bool swapped = false; 69 theHandler = theProjectileFragmentation->Get << 61 if(a2<a1) 70 theBLIR_ID = G4PhysicsModelCatalog::GetM << 62 { 71 debug_G4BinaryLightIonReactionResults = G4Ha << 63 debug.push_back("swapping...."); 72 } << 64 swapped = true; 73 << 65 G4double tmp(0); 74 G4BinaryLightIonReaction::~G4BinaryLightIonRea << 66 tmp = a2; a2=a1; a1=tmp; 75 {} << 67 tmp = z2; z2=z1; z1=tmp; 76 << 68 G4double m1=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(G4lrint(z1),G4lrint(a1)); 77 void G4BinaryLightIonReaction::ModelDescriptio << 69 G4LorentzVector it(m1, G4ThreeVector(0,0,0)); 78 { << 70 mom = toBreit*it; 79 outFile << "G4Binary Light Ion Cascade is an << 71 } 80 << "using G4BinaryCasacde to model the i << 72 debug.push_back("After swap"); 81 << "nucleus with a nucleus.\n" << 73 debug.push_back(a1); 82 << "The lighter of the two nuclei is tre << 74 debug.push_back(z1); 83 << "which are transported simultaneously << 75 debug.push_back(a2); 84 } << 76 debug.push_back(z2); 85 << 77 debug.push_back(mom); 86 //-------------------------------------------- << 78 debug.dump(); 87 struct ReactionProduct4Mom << 79 88 { << 80 G4ReactionProductVector * result = NULL; 89 G4LorentzVector operator()(G4LorentzVector << 81 G4ReactionProductVector * cascaders= new G4ReactionProductVector; 90 }; << 82 G4double m_nucl(0); // to check energy balance 91 << 83 92 G4HadFinalState *G4BinaryLightIonReaction:: << 84 93 ApplyYourself(const G4HadProjectile &aTrack, G << 85 // G4double m1=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(G4lrint(z1),G4lrint(a1)); 94 { << 86 // G4cout << "Entering the decision point " 95 if(debug_G4BinaryLightIonReactionResults) G4 << 87 // << (mom.t()-mom.mag())/a1 << " " 96 G4ping debug("debug_G4BinaryLightIonReaction << 88 // << a1<<" "<< z1<<" " 97 pA=aTrack.GetDefinition()->GetBaryonNumber() << 89 // << a2<<" "<< z2<<G4endl 98 pZ=G4lrint(aTrack.GetDefinition()->GetPDGCha << 90 // << " "<<mom.t()-mom.mag()<<" " 99 tA=targetNucleus.GetA_asInt(); << 91 // << mom.t()- m1<<G4endl; 100 tZ=targetNucleus.GetZ_asInt(); << 92 if( (mom.t()-mom.mag())/a1 < 50*MeV ) 101 G4double timePrimary = aTrack.GetGlobalTime( << 93 { 102 G4LorentzVector mom(aTrack.Get4Momentum()); << 94 // G4cout << "Using pre-compound only, E= "<<mom.t()-mom.mag()<<G4endl; 103 //G4cout << "proj mom : " << mom << G4endl; << 95 // m_nucl = mom.mag(); 104 G4LorentzRotation toBreit(mom.boostVector()) << 96 delete cascaders; 105 << 97 G4Fragment aPreFrag; 106 G4bool swapped=SetLighterAsProjectile(mom, t << 98 aPreFrag.SetA(a1+a2); 107 //G4cout << "after swap, swapped? / mom " < << 99 aPreFrag.SetZ(z1+z2); 108 G4ReactionProductVector * result = 0; << 100 aPreFrag.SetNumberOfParticles(G4lrint(a1)); 109 G4ReactionProductVector * cascaders=0; //new << 101 aPreFrag.SetNumberOfCharged(G4lrint(z1)); 110 // G4double m_nucl(0); // to check energ << 102 aPreFrag.SetNumberOfHoles(0); 111 << 103 G4ThreeVector plop(0.,0., mom.vect().mag()); 112 << 104 G4double m2=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(G4lrint(z2),G4lrint(a2)); 113 // G4double m1=G4ParticleTable::GetPartic << 105 m_nucl=m2; 114 // G4cout << "Entering the decision point << 106 G4LorentzVector aL(mom.t()+m2, plop); 115 // << (mom.t()-mom.mag())/pA << " << 107 aPreFrag.SetMomentum(aL); 116 // << pA<<" "<< pZ<<" " << 108 G4ParticleDefinition * preFragDef; 117 // << tA<<" "<< tZ<<G4endl << 109 preFragDef = G4ParticleTable::GetParticleTable() 118 // << " "<<mom.t()-mom.mag()<<" " << 110 ->FindIon(G4lrint(z1+z2),G4lrint(a1+a2),0,G4lrint(z1+z2)); 119 // << mom.t()- m1<<G4endl; << 111 aPreFrag.SetParticleDefinition(preFragDef); 120 if( (mom.t()-mom.mag())/pA < 50*MeV ) << 112 121 { << 113 // G4cout << "Fragment INFO "<< a1+a2 <<" "<<z1+z2<<" " 122 // G4cout << "Using pre-compound only << 114 // << aL <<" "<<preFragDef->GetParticleName()<<G4endl; 123 // m_nucl = mom.mag(); << 115 cascaders = theProjectileFragmentation.DeExcite(aPreFrag); 124 cascaders=FuseNucleiAndPrompound(mom); << 116 G4double tSum = 0; 125 if( !cascaders ) << 117 for(size_t count = 0; count<cascaders->size(); count++) 126 { << 118 { 127 << 119 cascaders->operator[](count)->SetNewlyAdded(true); 128 // abort!! happens for too low e << 120 tSum += cascaders->operator[](count)->GetKineticEnergy(); 129 << 121 } 130 theResult.Clear(); << 122 // G4cout << "Exiting pre-compound only, E= "<<tSum<<G4endl; 131 theResult.SetStatusChange(isAliv << 123 } 132 theResult.SetEnergyChange(aTrack << 124 else 133 theResult.SetMomentumChange(aTra << 125 { 134 return &theResult; << 126 135 } << 127 136 } << 128 G4V3DNucleus * fancyNucleus = NULL; 137 else << 129 G4V3DNucleus * projectile = NULL; 138 { << 130 G4double m1(0) ,m2(0); 139 result=Interact(mom,toBreit); << 131 G4LorentzVector it; 140 << 141 if(! result ) << 142 { << 143 // abort!! << 144 << 145 G4cerr << "G4BinaryLightIonReaction << 146 G4cerr << " Primary " << aTrack.Get << 147 << ", (A,Z)=(" << aTrack.GetDefi << 148 << "," << aTrack.GetDefinition() << 149 << ", kinetic energy " << aTrack << 150 << G4endl; << 151 G4cerr << " Target nucleus (A,Z)=(" << 152 << (swapped?pA:tA) << "," << 153 << (swapped?pZ:tZ) << ")" << << 154 G4cerr << " if frequent, please sub << 155 << G4endl << G4endl; << 156 << 157 theResult.Clear(); << 158 theResult.SetStatusChange(isAlive); << 159 theResult.SetEnergyChange(aTrack.Ge << 160 theResult.SetMomentumChange(aTrack. << 161 return &theResult; << 162 } << 163 << 164 // Calculate excitation energy, << 165 G4double theStatisticalExEnergy = GetProj << 166 << 167 << 168 pInitialState = mom; << 169 //G4cout << "BLIC: pInitialState from << 170 pInitialState.setT(pInitialState.getT() + << 171 G4ParticleTable::GetParticleTable()->GetIo << 172 //G4cout << "BLIC: target nucleus added << 173 << 174 delete target3dNucleus;target3dNucleus=0; << 175 delete projectile3dNucleus;projectile3dNu << 176 << 177 G4ReactionProductVector * spectators= new << 178 << 179 cascaders = new G4ReactionProductVector; << 180 << 181 G4LorentzVector pspectators=SortResult(re << 182 // this also sets spectatorA and << 183 << 184 // pFinalState=std::accumulate(casca << 185 << 186 std::vector<G4ReactionProduct *>::iterato << 187 << 188 // G4cout << "pInitialState, pFin << 189 // if ( spectA-spectatorA !=0 || spec << 190 // { << 191 // G4cout << "spect Nucl != spect << 192 // spectatorA <<" "<< spectatorZ << << 193 // } << 194 delete result; << 195 result=0; << 196 G4LorentzVector momentum(pInitialState-pF << 197 G4int loopcount(0); << 198 //G4cout << "BLIC: momentum, pspectato << 199 while (std::abs(momentum.e()-pspectators. << 200 << 201 { << 202 G4LorentzVector pCorrect(pInitialState- << 203 //G4cout << "BLIC:: BIC nonconservatio << 204 // Correct outgoing casacde particles.. << 205 G4bool EnergyIsCorrect=EnergyAndMomentu << 206 if ( ! EnergyIsCorrect && debug_G4Binar << 207 { << 208 G4cout << "Warning - G4BinaryLightIon << 209 } << 210 pFinalState=G4LorentzVector(0,0,0,0); << 211 for(iter=cascaders->begin(); iter!=casc << 212 { << 213 pFinalState += G4LorentzVector( (*ite << 214 } << 215 momentum=pInitialState-pFinalState; << 216 if (++loopcount > 10 ) << 217 { << 218 break; << 219 } << 220 } << 221 << 222 // Check if Energy/Momemtum is now ok, if << 223 if ( std::abs(momentum.e()-pspectators.e( << 224 { << 225 for (iter=spectators->begin();iter!=specta << 226 { << 227 delete *iter; << 228 } << 229 delete spectators; << 230 for(iter=cascaders->begin(); iter!=cascad << 231 { << 232 delete *iter; << 233 } << 234 delete cascaders; << 235 << 236 G4cout << "G4BinaryLightIonReaction.cc: m << 237 << " initial - final " << momentum << 238 << " .. pInitialState/pFinalState/s << 239 << pInitialState << G4endl << 240 << pFinalState << G4endl << 241 << pspectators << G4endl << 242 << " .. A,Z " << spectatorA <<" "<< << 243 G4cout << "G4BinaryLightIonReaction inval << 244 G4cout << " Primary " << aTrack.GetDefini << 245 << ", (A,Z)=(" << aTrack.GetDefin << 246 << "," << aTrack.GetDefinition()- << 247 << ", kinetic energy " << aTrack. << 248 << G4endl; << 249 G4cout << " Target nucleus (A,Z)=(" << t << 250 << "," << targetNucleus.GetZ_ << 251 G4cout << " if frequent, please submit ab << 252 << G4endl << G4endl; << 253 #ifdef debug_G4BinaryLightIonReaction << 254 G4ExceptionDescription ed; << 255 ed << "G4BinaryLightIonreaction: Ter << 256 G4Exception("G4BinaryLightIonreactio << 257 ed); << 258 << 259 #endif << 260 theResult.Clear(); << 261 theResult.SetStatusChange(isAlive); << 262 theResult.SetEnergyChange(aTrack.GetKinet << 263 theResult.SetMomentumChange(aTrack.Get4Mo << 264 return &theResult; << 265 << 266 } << 267 if (spectatorA > 0 ) << 268 { << 269 // DeExciteSpectatorNucleus() also << 270 DeExciteSpectatorNucleus(specta << 271 } else { // no spectators << 272 delete spectators; << 273 } << 274 } << 275 // Rotate to lab << 276 G4LorentzRotation toZ; << 277 toZ.rotateZ(-1*mom.phi()); << 278 toZ.rotateY(-1*mom.theta()); << 279 G4LorentzRotation toLab(toZ.inverse()); << 280 << 281 // Fill the particle change, while rotating. << 282 // theResult.Clear(); << 283 theResult.Clear(); << 284 theResult.SetStatusChange(stopAndKill); << 285 G4LorentzVector ptot(0); << 286 #ifdef debug_BLIR_result << 287 G4LorentzVector p_raw; << 288 #endif << 289 //G4int i=0; << 290 132 291 G4ReactionProductVector::iterator iter << 133 G4FermiMomentum theFermi; 292 for(iter=cascaders->begin(); iter!=cascaders << 134 G4int tryCount(0); >> 135 while(!result) >> 136 { >> 137 projectile = new G4Fancy3DNucleus; >> 138 projectile->Init(a1, z1); >> 139 m1=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( >> 140 projectile->GetCharge(),projectile->GetMassNumber()); >> 141 it=toBreit * G4LorentzVector(m1,G4ThreeVector(0,0,0)); >> 142 fancyNucleus = new G4Fancy3DNucleus; >> 143 fancyNucleus->Init(a2, z2); >> 144 m2=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass( >> 145 fancyNucleus->GetCharge(),fancyNucleus->GetMassNumber()); >> 146 m_nucl = ( swapped ) ? m1 : m2; >> 147 // G4cout << " mass table, nucleus, delta : " << m2 <<" "<< fancyNucleus->GetMass() >> 148 // <<" "<<m2-fancyNucleus->GetMass() << G4endl; >> 149 G4double impactMax = fancyNucleus->GetOuterRadius()+projectile->GetOuterRadius(); >> 150 G4double aX=(2.*G4UniformRand()-1.)*impactMax; >> 151 G4double aY=(2.*G4UniformRand()-1.)*impactMax; >> 152 G4ThreeVector pos(aX, aY, -2.*impactMax-5.*fermi); >> 153 debug.push_back("Impact parameter"); >> 154 debug.push_back(aX); >> 155 debug.push_back(aY); >> 156 debug.push_back(-2.*impactMax); >> 157 debug.dump(); >> 158 >> 159 G4KineticTrackVector * initalState = new G4KineticTrackVector; >> 160 projectile->StartLoop(); >> 161 G4Nucleon * aNuc; >> 162 G4LorentzVector tmpV(0,0,0,0); >> 163 G4LorentzVector nucleonMom(1./a1*mom); >> 164 nucleonMom.setZ(nucleonMom.vect().mag()); >> 165 nucleonMom.setX(0); >> 166 nucleonMom.setY(0); >> 167 debug.push_back(" projectile nucleon momentum"); >> 168 debug.push_back(nucleonMom); >> 169 debug.dump(); >> 170 theFermi.Init(a1,z1); >> 171 while( (aNuc=projectile->GetNextNucleon()) ) 293 { 172 { 294 if((*iter)->GetNewlyAdded()) << 173 G4LorentzVector p4 = aNuc->GetMomentum(); 295 { << 174 tmpV+=p4; 296 G4DynamicParticle * aNewDP = << 175 G4ThreeVector nucleonPosition(aNuc->GetPosition()); 297 new G4DynamicParticle((*iter)->GetDe << 176 G4double density=(projectile->GetNuclearDensity())->GetDensity(nucleonPosition); 298 (*iter)->GetTotalEnergy(), << 177 nucleonPosition += pos; 299 (*iter)->GetMomentum() ); << 178 G4KineticTrack * it = new G4KineticTrack(aNuc, nucleonPosition, nucleonMom ); 300 G4LorentzVector tmp = aNewDP->Get4Moment << 179 it->SetState(G4KineticTrack::outside); 301 #ifdef debug_BLIR_result << 180 G4double pfermi= theFermi.GetFermiMomentum(density); 302 p_raw+= tmp; << 181 G4double mass = aNuc->GetDefinition()->GetPDGMass(); 303 #endif << 182 G4double Efermi= sqrt( sqr(mass) + sqr(pfermi)) - mass; 304 if(swapped) << 183 it->SetProjectilePotential(-Efermi); 305 { << 184 initalState->push_back(it); 306 tmp*=toBreit.inverse(); << 307 tmp.setVect(-tmp.vect()); << 308 } << 309 tmp *= toLab; << 310 aNewDP->Set4Momentum(tmp); << 311 G4HadSecondary aNew = G4HadSecondary(aNe << 312 G4double time = 0; << 313 //if(time < 0.0) { time = 0.0; } << 314 aNew.SetTime(timePrimary + time); << 315 //aNew.SetCreatorModelID((*iter)-> << 316 aNew.SetCreatorModelID(theBLIR_ID) << 317 << 318 theResult.AddSecondary(aNew); << 319 ptot += tmp; << 320 //G4cout << "BLIC: Secondary " < << 321 // <<" "<< aNew->GetMomen << 322 } << 323 delete *iter; << 324 } 185 } 325 delete cascaders; << 186 debug.push_back(tmpV); 326 << 187 debug.dump(); 327 #ifdef debug_BLIR_result << 328 //G4cout << "Result analysis, secondaries " << 329 //G4cout << "p_tot_raw " << p_raw << " sum p << 330 G4double m_nucl= G4ParticleTable::GetPartic << 331 GetIonMass(targetNucleus.GetZ_asInt( << 332 // delete? tZ=targetNucleus.GetZ_asInt(); << 333 << 334 //G4cout << "BLIC Energy conservation initia << 335 // << aTrack.GetTotalEnergy() + m_nuc << 336 // <<" "<< aTrack.GetTotalEnergy() + m_ << 337 G4cout << "BLIC momentum conservation " << a << 338 << " ptot " << ptot << " delta " << aTra << 339 << " 3mom.mag() " << (aTrack.Get4 << 340 #endif << 341 << 342 if(debug_G4BinaryLightIonReactionResults) G4 << 343 188 344 return &theResult; << 189 result=theModel.Propagate(initalState, fancyNucleus); 345 } << 190 debug.push_back("################# Result size"); >> 191 debug.push_back(result->size()); >> 192 debug.dump(); >> 193 std::for_each(initalState->begin(), initalState->end(), Delete<G4KineticTrack>()); >> 194 delete initalState; 346 195 347 //-------------------------------------------- << 196 if(result->size()==0) >> 197 { >> 198 delete result; result=0; >> 199 delete fancyNucleus; >> 200 delete projectile; >> 201 if (++tryCount > 100) >> 202 { >> 203 // abort!! >> 204 >> 205 G4cerr << "G4BinaryLightIonReaction no final state for: " << G4endl; >> 206 G4cerr << " Primary " << aTrack.GetDefinition() >> 207 << ", (A,Z)=(" << aTrack.GetDefinition()->GetBaryonNumber() >> 208 << "," << aTrack.GetDefinition()->GetPDGCharge() << ") " >> 209 << ", kinetic energy " << aTrack.GetKineticEnergy() >> 210 << G4endl; >> 211 G4cerr << " Target nucleus (A,Z)=(" << targetNucleus.GetN() >> 212 << "," << targetNucleus.GetZ() << G4endl; >> 213 G4cerr << " if frequent, please submit above information as bug report" >> 214 << G4endl << G4endl; >> 215 >> 216 theResult.Clear(); >> 217 theResult.SetStatusChange(isAlive); >> 218 theResult.SetEnergyChange(aTrack.GetKineticEnergy()); >> 219 theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); >> 220 return &theResult; 348 221 349 //******************************************** << 222 } 350 G4bool G4BinaryLightIonReaction::EnergyAndMome << 223 } 351 G4ReactionProductVector* Output, G4Lorentz << 224 else 352 //******************************************** << 353 { << 354 const int nAttemptScale = 2500; << 355 const double ErrLimit = 1.E-6; << 356 if (Output->empty()) << 357 return TRUE; << 358 G4LorentzVector SumMom(0,0,0,0); << 359 G4double SumMass = 0; << 360 G4double TotalCollisionMass = TotalCo << 361 size_t i = 0; << 362 // Calculate sum hadron 4-momenta and summin << 363 for(i = 0; i < Output->size(); i++) << 364 { 225 { 365 SumMom += G4LorentzVector((*Output)[i]->G << 226 break; 366 SumMass += (*Output)[i]->GetDefinition()-> << 227 } 367 } << 228 } 368 // G4cout << " E/P corrector, SumMass, Sum << 229 debug.push_back("################# Through the loop ? "); debug.dump(); 369 // << SumMass <<" "<< SumMom.m2() << << 230 //inverse transformation in case we swapped. 370 if (SumMass > TotalCollisionMass) return FAL << 231 G4int resA(0), resZ(0); 371 SumMass = SumMom.m2(); << 232 G4Nucleon * aNuc; 372 if (SumMass < 0) return FALSE; << 233 // fancyNucleus->StartLoop(); 373 SumMass = std::sqrt(SumMass); << 234 // while( (aNuc=fancyNucleus->GetNextNucleon()) ) 374 << 235 // { 375 // Compute c.m.s. hadron velocity and boost << 236 // G4cout << " tgt Nucleon : " << aNuc->GetDefinition()->GetParticleName() <<" "<< aNuc->AreYouHit() <<" "<<aNuc->GetMomentum()<<G4endl; 376 G4ThreeVector Beta = -SumMom.boostVector(); << 237 // } 377 //G4cout << " == pre boost 2 "<< SumMo << 238 G4ReactionProductVector * spectators= new G4ReactionProductVector; 378 //--old Output->Boost(Beta); << 239 debug.push_back("getting at the hits"); debug.dump(); 379 for(i = 0; i < Output->size(); i++) << 240 // the projectile excitation energy estimate... >> 241 G4double theStatisticalExEnergy = 0; >> 242 projectile->StartLoop(); >> 243 while( (aNuc=projectile->GetNextNucleon()) ) >> 244 { >> 245 // G4cout << " Nucleon : " << aNuc->GetDefinition()->GetParticleName() <<" "<< aNuc->AreYouHit() <<" "<<aNuc->GetMomentum()<<G4endl; >> 246 debug.push_back("getting the hits"); debug.dump(); >> 247 if(!aNuc->AreYouHit()) 380 { 248 { 381 G4LorentzVector mom = G4LorentzVector((*Ou << 249 resA++; 382 mom *= Beta; << 250 resZ+=G4lrint(aNuc->GetDefinition()->GetPDGCharge()); 383 (*Output)[i]->SetMomentum(mom.vect()); << 384 (*Output)[i]->SetTotalEnergy(mom.e()); << 385 } 251 } 386 << 252 else 387 // Scale total c.m.s. hadron energy (hadron << 388 // It should be equal interaction mass << 389 G4double Scale = 0,OldScale=0; << 390 G4double factor = 1.; << 391 G4int cAttempt = 0; << 392 G4double Sum = 0; << 393 G4bool success = false; << 394 for(cAttempt = 0; cAttempt < nAttemptScale; << 395 { 253 { 396 Sum = 0; << 254 debug.push_back(" ##### a hit ##### "); debug.dump(); 397 for(i = 0; i < Output->size(); i++) << 255 G4ThreeVector aPosition(aNuc->GetPosition()); 398 { << 256 G4double localDensity = projectile->GetNuclearDensity()->GetDensity(aPosition); 399 G4LorentzVector HadronMom = G4LorentzVec << 257 G4double localPfermi = theFermi.GetFermiMomentum(localDensity); 400 HadronMom.setVect(HadronMom.vect()+ fact << 258 G4double nucMass = aNuc->GetDefinition()->GetPDGMass(); 401 G4double E = std::sqrt(HadronMom.vect(). << 259 G4double localFermiEnergy = sqrt(nucMass*nucMass + localPfermi*localPfermi) - nucMass; 402 HadronMom.setE(E); << 260 G4double deltaE = localFermiEnergy - (aNuc->GetMomentum().t()-aNuc->GetMomentum().mag()); 403 (*Output)[i]->SetMomentum(HadronMom.vect << 261 theStatisticalExEnergy += deltaE; 404 (*Output)[i]->SetTotalEnergy(HadronMom.e << 405 Sum += E; << 406 } << 407 OldScale=Scale; << 408 Scale = TotalCollisionMass/Sum - 1; << 409 // G4cout << "E/P corr - " << cAttempt << << 410 if (std::abs(Scale) <= ErrLimit << 411 || OldScale == Scale) // protect ' << 412 { << 413 if (debug_G4BinaryLightIonReactionResult << 414 success = true; << 415 break; << 416 } << 417 if ( cAttempt > 10 ) << 418 { << 419 // G4cout << " speed it up? " << << 420 factor=std::max(1.,G4Log(std::abs(OldSca << 421 // G4cout << " ? factor ? " << factor << 422 } << 423 } 262 } 424 << 263 debug.push_back("collected a hit"); 425 if( (!success) && debug_G4BinaryLightIonRea << 264 debug.push_back(aNuc->GetMomentum()); >> 265 debug.dump(); >> 266 } >> 267 delete fancyNucleus; >> 268 delete projectile; >> 269 G4ping debug("debug_G4BinaryLightIonReaction_1"); >> 270 debug.push_back("have the hits. A,Z, excitE"); >> 271 debug.push_back(resA); >> 272 debug.push_back(resZ); >> 273 debug.push_back(theStatisticalExEnergy); >> 274 debug.dump(); >> 275 // Calculate excitation energy >> 276 G4LorentzVector iState = mom; >> 277 iState.setT(iState.getT()+m2); >> 278 >> 279 G4LorentzVector fState(0,0,0,0); >> 280 G4LorentzVector pspectators(0,0,0,0); >> 281 unsigned int i(0); >> 282 // G4int spectA(0),spectZ(0); >> 283 for(i=0; i<result->size(); i++) >> 284 { >> 285 if( (*result)[i]->GetNewlyAdded() ) 426 { 286 { 427 G4cout << "G4G4BinaryLightIonReaction::Ene << 287 fState += G4LorentzVector( (*result)[i]->GetMomentum(), (*result)[i]->GetTotalEnergy() ); 428 G4cout << " Scale not unity at end of it << 288 cascaders->push_back((*result)[i]); 429 G4cout << " Increase number of attempts << 289 // G4cout <<" secondary ... "; >> 290 debug.push_back("secondary "); >> 291 debug.push_back((*result)[i]->GetDefinition()->GetParticleName()); >> 292 debug.push_back(G4LorentzVector((*result)[i]->GetMomentum(),(*result)[i]->GetTotalEnergy())); >> 293 debug.dump(); 430 } 294 } 431 << 295 else { 432 // Compute c.m.s. interaction velocity and K << 296 // G4cout <<" spectator ... "; 433 Beta = TotalCollisionMom.boostVector(); << 297 pspectators += G4LorentzVector( (*result)[i]->GetMomentum(), (*result)[i]->GetTotalEnergy() ); 434 //--old Output->Boost(Beta); << 298 spectators->push_back((*result)[i]); 435 for(i = 0; i < Output->size(); i++) << 299 debug.push_back("spectator "); 436 { << 300 debug.push_back((*result)[i]->GetDefinition()->GetParticleName()); 437 G4LorentzVector mom = G4LorentzVector((*Ou << 301 debug.push_back(G4LorentzVector((*result)[i]->GetMomentum(),(*result)[i]->GetTotalEnergy())); 438 mom *= Beta; << 302 debug.dump(); 439 (*Output)[i]->SetMomentum(mom.vect()); << 303 // spectA++; 440 (*Output)[i]->SetTotalEnergy(mom.e()); << 304 // spectZ+= G4lrint((*result)[i]->GetDefinition()->GetPDGCharge()); 441 } 305 } 442 return TRUE; << 443 } << 444 G4bool G4BinaryLightIonReaction::SetLighterAsP << 445 { << 446 G4bool swapped = false; << 447 if(tA<pA) << 448 { << 449 swapped = true; << 450 G4int tmp(0); << 451 tmp = tA; tA=pA; pA=tmp; << 452 tmp = tZ; tZ=pZ; pZ=tmp; << 453 G4double m1=G4ParticleTable::GetParticle << 454 G4LorentzVector it(m1, G4ThreeVector(0,0 << 455 mom = toBreit*it; << 456 } << 457 return swapped; << 458 } << 459 G4ReactionProductVector * G4BinaryLightIonReac << 460 { << 461 // Check if kinematically nuclei can fuse. << 462 G4double mFused=G4ParticleTable::GetParticl << 463 G4double mTarget=G4ParticleTable::GetPartic << 464 G4LorentzVector pCompound(mom.e()+mTarget,m << 465 G4double m2Compound=pCompound.m2(); << 466 if (m2Compound < sqr(mFused) ) { << 467 //G4cout << "G4BLIC: projectile p, mTarge << 468 // << " " << sqrt(m2Compound)<< " " << 469 return 0; << 470 } << 471 306 472 G4Fragment aPreFrag; << 307 // G4cout << (*result)[i]<< " " 473 aPreFrag.SetZandA_asInt(pZ+tZ, pA+tA); << 308 // << (*result)[i]->GetDefinition()->GetParticleName() << " " 474 aPreFrag.SetNumberOfParticles(pA); << 309 // << (*result)[i]->GetMomentum()<< " " 475 aPreFrag.SetNumberOfCharged(pZ); << 310 // << (*result)[i]->GetTotalEnergy() << G4endl; 476 aPreFrag.SetNumberOfHoles(0); << 311 } 477 //GF FIXME: whyusing plop in z direction? t << 312 // if ( spectA-resA !=0 || spectZ-resZ !=0) 478 //G4ThreeVector plop(0.,0., mom.vect().mag( << 313 // { 479 //G4LorentzVector aL(mom.t()+mTarget, plop) << 314 // G4cout << "spect Nucl != spectators: nucl a,z; spect a,z" << 480 G4LorentzVector aL(mom.t()+mTarget,mom.vect << 315 // resA <<" "<< resZ <<" ; " << spectA <<" "<< spectZ << G4endl; 481 aPreFrag.SetMomentum(aL); << 316 // } 482 << 317 delete result; 483 << 318 debug.push_back(" iState - (fState+pspectators) "); 484 //G4cout << "Fragment INFO "<< pA+tA << 319 debug.push_back(iState-fState-pspectators); 485 // << aL <<" "<<G4endl << aPreF << 320 debug.dump(); 486 G4ReactionProductVector * cascaders = thePr << 321 G4LorentzVector momentum(iState-fState); 487 //G4double tSum = 0; << 322 G4int loopcount(0); 488 for(size_t count = 0; count<cascaders->size << 323 while (abs(momentum-pspectators.e()) > 10*MeV) 489 { << 490 cascaders->operator[](count)->SetNewlyAd << 491 //tSum += cascaders->operator[](count)-> << 492 } << 493 // G4cout << "Exiting pre-compound on << 494 return cascaders; << 495 } << 496 G4ReactionProductVector * G4BinaryLightIonReac << 497 { << 498 G4ReactionProductVector * result = 0; << 499 G4double projectileMass(0); << 500 G4LorentzVector it; << 501 << 502 G4int tryCount(0); << 503 do << 504 { 324 { 505 ++tryCount; << 325 debug.push_back("the momentum balance"); 506 projectile3dNucleus = new G4Fancy3DNu << 326 debug.push_back(iState); 507 projectile3dNucleus->Init(pA, pZ); << 327 debug.push_back(fState); 508 projectile3dNucleus->CenterNucleons() << 328 debug.push_back(momentum-pspectators); 509 projectileMass=G4ParticleTable::GetPa << 329 debug.push_back(momentum); 510 projectile3dNucleus->GetCharge( << 330 debug.dump(); 511 it=toBreit * G4LorentzVector(projecti << 331 G4LorentzVector pCorrect(iState-pspectators); 512 << 332 G4bool EnergyIsCorrect=EnergyAndMomentumCorrector(cascaders, pCorrect); 513 target3dNucleus = new G4Fancy3DNucleu << 333 if ( ! EnergyIsCorrect && getenv("debug_G4BinaryLightIonReactionResults")) 514 target3dNucleus->Init(tA, tZ); << 515 G4double impactMax = target3dNucleus- << 516 // G4cout << "out radius - nuc << 517 G4double aX=(2.*G4UniformRand()-1.)*i << 518 G4double aY=(2.*G4UniformRand()-1.)*i << 519 G4ThreeVector pos(aX, aY, -2.*impactM << 520 << 521 G4KineticTrackVector * initalState = << 522 projectile3dNucleus->StartLoop(); << 523 G4Nucleon * aNuc; << 524 G4LorentzVector tmpV(0,0,0,0); << 525 #ifdef debug_BLIR_finalstate << 526 G4LorentzVector pinitial; << 527 #endif << 528 G4LorentzVector nucleonMom(1./pA*mom) << 529 nucleonMom.setZ(nucleonMom.vect().mag << 530 nucleonMom.setX(0); << 531 nucleonMom.setY(0); << 532 theFermi.Init(pA,pZ); << 533 while( (aNuc=projectile3dNucleus->Get << 534 { 334 { 535 G4LorentzVector p4 = aNuc->GetMome << 335 G4cout << "Warning - G4BinaryLightIonReaction E/P correction for cascaders failed" << G4endl; 536 tmpV+=p4; << 537 G4ThreeVector nucleonPosition(aNuc << 538 G4double density=(projectile3dNucl << 539 nucleonPosition += pos; << 540 G4KineticTrack * it1 = new G4Kinet << 541 it1->SetState(G4KineticTrack::outs << 542 G4double pfermi= theFermi.GetFermi << 543 G4double mass = aNuc->GetDefinitio << 544 G4double Efermi= std::sqrt( sqr(ma << 545 it1->SetProjectilePotential(-Eferm << 546 initalState->push_back(it1); << 547 #ifdef debug_BLIR_finalstate << 548 pinitial += it1->Get4Momentum() << 549 #endif << 550 } 336 } 551 << 337 fState=G4LorentzVector(); 552 result=theModel->Propagate(initalStat << 338 for(i=0; i<cascaders->size(); i++) 553 #ifdef debug_BLIR_finalstate << 554 if( result && result->size()>0) << 555 { << 556 G4cout << " Cascade result " << G4endl; << 557 G4LorentzVector presult; << 558 G4ReactionProductVector::iterator << 559 G4ReactionProduct xp; << 560 for (iter=result->begin(); iter ! << 561 { << 562 presult += G4LorentzVector((*ite << 563 G4cout << (*iter)->GetDefinition()->Ge << 564 << "("<< (*iter)->GetMomentum().x()<<" << 565 << (*iter)->GetMomentum().y()<<"," << 566 << (*iter)->GetMomentum().z()<<";" << 567 << (*iter)->GetTotalEnergy() <<")"< << 568 } << 569 << 570 G4cout << "BLIC check result : in << 571 << " final " << presult << 572 << " IF - FF " << pinitial +G << 573 << 574 } << 575 #endif << 576 if( result && result->size()==0) << 577 { 339 { 578 delete result; << 340 fState += G4LorentzVector( (*cascaders)[i]->GetMomentum(), (*cascaders)[i]->GetTotalEnergy() ); 579 result=0; << 341 } 580 } << 342 momentum=iState-fState; 581 if ( ! result ) << 343 debug.push_back("the momentum balance after correction"); 582 { << 344 debug.push_back(iState); 583 delete target3dNucleus; << 345 debug.push_back(fState); 584 delete projectile3dNucleus; << 346 debug.push_back(momentum-pspectators); 585 } << 347 debug.push_back(momentum); >> 348 debug.dump(); >> 349 if (++loopcount > 10 ) >> 350 { >> 351 if ( momentum.vect().mag() > momentum.e() ) >> 352 { >> 353 G4cerr << "G4BinaryLightIonReaction.cc: Cannot correct 4-momentum of cascade particles" << G4endl; >> 354 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCasacde::ApplyCollision()"); >> 355 } else { >> 356 break; >> 357 } >> 358 >> 359 } >> 360 } 586 361 587 // std::for_each(initalState->begin() << 588 // delete initalState; << 589 362 590 } while (! result && tryCount< 150); / << 591 return result; << 592 } << 593 G4double G4BinaryLightIonReaction::GetProjecti << 594 { << 595 363 596 G4Nucleon * aNuc; << 364 597 // the projectileNucleus excitation ener << 365 // call precompound model 598 G4double theStatisticalExEnergy = 0; << 366 G4ReactionProductVector * proFrag = NULL; 599 projectile3dNucleus->StartLoop(); << 367 G4LorentzVector pFragment; 600 while( (aNuc=projectile3dNucleus->GetNex << 368 // G4cout << " == pre boost 1 "<< momentum.e()<< " "<< momentum.mag()<<G4endl; >> 369 G4LorentzRotation boost_fragments; >> 370 // G4cout << " == post boost 1 "<< momentum.e()<< " "<< momentum.mag()<<G4endl; >> 371 // G4LorentzRotation boost_spectator_mom(-momentum.boostVector()); >> 372 // G4cout << "- momentum " << boost_spectator_mom * momentum << G4endl; >> 373 G4LorentzVector pFragments(0); >> 374 if(resZ>0 && resA>1) 601 { 375 { 602 //G4cout << " Nucleon : " << a << 376 // Make the fragment 603 if(aNuc->AreYouHit()) { << 377 G4Fragment aProRes; 604 G4ThreeVector aPosition(aNuc->GetP << 378 aProRes.SetA(resA); 605 G4double localDensity = projectile << 379 aProRes.SetZ(resZ); 606 G4double localPfermi = theFermi.Ge << 380 aProRes.SetNumberOfParticles(0); 607 G4double nucMass = aNuc->GetDefini << 381 aProRes.SetNumberOfCharged(0); 608 G4double localFermiEnergy = std::s << 382 aProRes.SetNumberOfHoles(G4lrint(a1)-resA); 609 G4double deltaE = localFermiEnergy << 383 G4double mFragment=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(resZ,resA); 610 theStatisticalExEnergy += deltaE; << 384 G4LorentzVector pFragment(0,0,0,mFragment+std::max(0.,theStatisticalExEnergy) ); 611 } << 385 aProRes.SetMomentum(pFragment); >> 386 G4ParticleDefinition * resDef; >> 387 resDef = G4ParticleTable::GetParticleTable()->FindIon(resZ,resA,0,resZ); >> 388 aProRes.SetParticleDefinition(resDef); >> 389 proFrag = theHandler.BreakItUp(aProRes); >> 390 if ( momentum.vect().mag() > momentum.e() ) >> 391 { >> 392 G4cerr << "mom check: " << momentum >> 393 << " 3.mag "<< momentum.vect().mag() << G4endl >> 394 << " .. iState/fState/spectators " << iState <<" " >> 395 << fState << " " << pspectators << G4endl >> 396 << " .. A,Z " << resA <<" "<< resZ << G4endl; >> 397 G4cerr << "G4BinaryLightIonReaction no final state for: " << G4endl; >> 398 G4cerr << " Primary " << aTrack.GetDefinition() >> 399 << ", (A,Z)=(" << aTrack.GetDefinition()->GetBaryonNumber() >> 400 << "," << aTrack.GetDefinition()->GetPDGCharge() << ") " >> 401 << ", kinetic energy " << aTrack.GetKineticEnergy() >> 402 << G4endl; >> 403 G4cerr << " Target nucleus (A,Z)=(" << targetNucleus.GetN() >> 404 << "," << targetNucleus.GetZ() << G4endl; >> 405 G4cerr << " if frequent, please submit above information as bug report" >> 406 << G4endl << G4endl; >> 407 >> 408 theResult.Clear(); >> 409 theResult.SetStatusChange(isAlive); >> 410 theResult.SetEnergyChange(aTrack.GetKineticEnergy()); >> 411 theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); >> 412 return &theResult; 612 } 413 } 613 return theStatisticalExEnergy; << 414 614 } << 415 G4LorentzRotation boost_fragments_here(momentum.boostVector()); 615 << 416 boost_fragments = boost_fragments_here; 616 G4LorentzVector G4BinaryLightIonReaction::Sort << 417 617 { << 418 // G4cout << " Fragment a,z, Mass Fragment, mass spect-mom, exitationE " 618 unsigned int i(0); << 419 // << resA <<" "<< resZ <<" "<< mFragment <<" " 619 spectatorA=spectatorZ=0; << 420 // << momentum.mag() <<" "<< momentum.mag() - mFragment 620 G4LorentzVector pspectators(0,0,0,0); << 421 // << " "<<theStatisticalExEnergy 621 pFinalState=G4LorentzVector(0,0,0,0); << 422 // << " "<< boost_fragments*pFragment<< G4endl; 622 for(i=0; i<result->size(); i++) << 423 G4ReactionProductVector::iterator ispectator; 623 { << 424 for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++) 624 if( (*result)[i]->GetNewlyAdded() ) << 425 { 625 { << 426 delete *ispectator; 626 pFinalState += G4LorentzVector( (*res << 427 } 627 cascaders->push_back((*result)[i]); << 428 } 628 } << 429 else if(resA!=0) 629 else { << 630 // G4cout <<" spectator ... << 631 pspectators += G4LorentzVector( (*res << 632 spectators->push_back((*result)[i]); << 633 spectatorA++; << 634 spectatorZ+= G4lrint((*result)[i]->Ge << 635 } << 636 << 637 // G4cout << (*result)[i]<< " " << 638 // << (*result)[i]->GetDefinition << 639 // << (*result)[i]->GetMomentum() << 640 // << (*result)[i]->GetTotalEnerg << 641 } << 642 //G4cout << "pFinalState / pspectators, << 643 // << " (" << spectatorA << ", "<< sp << 644 << 645 return pspectators; << 646 } << 647 << 648 void G4BinaryLightIonReaction::DeExciteSpectat << 649 << 650 { << 651 // call precompound model << 652 G4ReactionProductVector * proFrag = 0; << 653 G4LorentzVector pFragment(0.,0.,0.,0.); << 654 // G4cout << " == pre boost 1 "<< mome << 655 G4LorentzRotation boost_fragments; << 656 // G4cout << " == post boost 1 "<< mom << 657 // G4LorentzRotation boost_spectator_mom << 658 // G4cout << "- momentum " << boost_spe << 659 G4LorentzVector pFragments(0,0,0,0); << 660 << 661 if(spectatorZ>0 && spectatorA>1) << 662 { << 663 // Make the fragment << 664 G4Fragment aProRes; << 665 aProRes.SetZandA_asInt(spectatorZ, spect << 666 aProRes.SetNumberOfParticles(0); << 667 aProRes.SetNumberOfCharged(0); << 668 aProRes.SetNumberOfHoles(pA-spectatorA); << 669 G4double mFragment=G4ParticleTable::GetP << 670 pFragment=G4LorentzVector(0,0,0,mFragmen << 671 aProRes.SetMomentum(pFragment); << 672 << 673 proFrag = theHandler->BreakItUp(aProRes) << 674 << 675 boost_fragments = G4LorentzRotation(pSpe << 676 << 677 // G4cout << " Fragment a,z, Mass Fr << 678 // << spectatorA <<" "<< spectator << 679 // << momentum.mag() <<" "<< momen << 680 // << " "<<theStatisticalExEnergy << 681 // << " "<< boost_fragments*pFragm << 682 G4ReactionProductVector::iterator ispect << 683 for (ispectator=spectators->begin();ispe << 684 { 430 { 685 delete *ispectator; << 431 G4ReactionProductVector::iterator ispectator; >> 432 for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++) >> 433 { >> 434 (*ispectator)->SetNewlyAdded(true); >> 435 cascaders->push_back(*ispectator); >> 436 pFragments+=G4LorentzVector((*ispectator)->GetMomentum(),(*ispectator)->GetTotalEnergy()); >> 437 // G4cout << "from spectator " >> 438 // << (*ispectator)->GetDefinition()->GetParticleName() << " " >> 439 // << (*ispectator)->GetMomentum()<< " " >> 440 // << (*ispectator)->GetTotalEnergy() << G4endl; >> 441 } 686 } 442 } 687 } << 443 if (spectators) delete spectators; 688 else if(spectatorA!=0) << 444 689 { << 445 // collect the evaporation part 690 G4ReactionProductVector::iterator ispecta << 446 debug.push_back("the nucleon count balance"); 691 for (ispectator=spectators->begin();ispec << 447 debug.push_back(resA); 692 { << 448 debug.push_back(resZ); 693 (*ispectator)->SetNewlyAdded(true); << 449 if(proFrag) debug.push_back(proFrag->size()); 694 cascaders->push_back(*ispectator); << 450 debug.dump(); 695 pFinalState+=G4LorentzVector((*ispect << 451 G4ReactionProductVector::iterator ii; 696 //G4cout << "BLIC: spectator << 452 if(proFrag) for(ii=proFrag->begin(); ii!=proFrag->end(); ii++) 697 // << (*ispectator)->GetDefi << 453 { 698 // << (*ispectator)->GetMome << 454 (*ii)->SetNewlyAdded(true); 699 // << (*ispectator)->GetTota << 455 G4LorentzVector tmp((*ii)->GetMomentum(),(*ii)->GetTotalEnergy()); >> 456 tmp *= boost_fragments; >> 457 (*ii)->SetMomentum(tmp.vect()); >> 458 (*ii)->SetTotalEnergy(tmp.e()); >> 459 // result->push_back(*ii); >> 460 pFragments += tmp; 700 } 461 } 701 462 702 } << 463 // G4cout << "Fragmented p, momentum, delta " << pFragments <<" "<<momentum 703 // / if (spectators) << 464 // <<" "<< pFragments-momentum << G4endl; 704 delete spectators; << 465 debug.push_back("################# done with evaporation"); debug.dump(); >> 466 >> 467 // correct p/E of Cascade secondaries >> 468 G4LorentzVector pCas=iState - pFragments; >> 469 // G4cout <<" Going to correct from " << fState << " to " << pCas << G4endl; >> 470 G4bool EnergyIsCorrect=EnergyAndMomentumCorrector(cascaders, pCas); >> 471 if ( ! EnergyIsCorrect ) >> 472 { >> 473 if(getenv("debug_G4BinaryLightIonReactionResults")) >> 474 G4cout << "G4BinaryLightIonReaction E/P correction for nucleus failed, will try to correct overall" << G4endl; >> 475 } 705 476 706 // collect the evaporation part and boost t << 477 // Add deexcitation secondaries 707 G4ReactionProductVector::iterator ii; << 478 if(proFrag) for(ii=proFrag->begin(); ii!=proFrag->end(); ii++) 708 if(proFrag) << 479 { 709 { << 480 cascaders->push_back(*ii); 710 for(ii=proFrag->begin(); ii!=proFrag->en << 711 { << 712 (*ii)->SetNewlyAdded(true); << 713 G4LorentzVector tmp((*ii)->GetMomentu << 714 tmp *= boost_fragments; << 715 (*ii)->SetMomentum(tmp.vect()); << 716 (*ii)->SetTotalEnergy(tmp.e()); << 717 // result->push_back(*ii); << 718 pFragments += tmp; << 719 } 481 } 720 } << 482 if (proFrag) delete proFrag; 721 483 722 // G4cout << "Fragmented p, momentum, de << 484 if ( ! EnergyIsCorrect ) 723 // <<" "<< pFragments-momentum < << 485 { >> 486 if (! EnergyAndMomentumCorrector(cascaders,iState)) >> 487 { >> 488 if(getenv("debug_G4BinaryLightIonReactionResults")) >> 489 G4cout << "G4BinaryLightIonReaction E/P corrections failed" << G4endl; >> 490 } >> 491 } >> 492 >> 493 } >> 494 >> 495 // Rotate to lab >> 496 G4LorentzRotation toZ; >> 497 toZ.rotateZ(-1*mom.phi()); >> 498 toZ.rotateY(-1*mom.theta()); >> 499 G4LorentzRotation toLab(toZ.inverse()); >> 500 >> 501 // Fill the particle change, while rotating. Boost from projectile breit-frame in case we swapped. >> 502 // theResult.Clear(); >> 503 theResult.Clear(); >> 504 theResult.SetStatusChange(stopAndKill); >> 505 G4double Etot(0); >> 506 size_t i=0; >> 507 for(i=0; i<cascaders->size(); i++) >> 508 { >> 509 if((*cascaders)[i]->GetNewlyAdded()) >> 510 { >> 511 G4DynamicParticle * aNew = >> 512 new G4DynamicParticle((*cascaders)[i]->GetDefinition(), >> 513 (*cascaders)[i]->GetTotalEnergy(), >> 514 (*cascaders)[i]->GetMomentum() ); >> 515 G4LorentzVector tmp = aNew->Get4Momentum(); >> 516 if(swapped) >> 517 { >> 518 tmp*=toBreit.inverse(); >> 519 tmp.setVect(-tmp.vect()); >> 520 } >> 521 tmp *= toLab; >> 522 aNew->Set4Momentum(tmp); >> 523 theResult.AddSecondary(aNew); >> 524 Etot += tmp.e(); >> 525 // G4cout << "LIBIC: Secondary " << aNew->GetDefinition()->GetParticleName() >> 526 // <<" "<< aNew->GetMomentum() >> 527 // <<" "<< aNew->GetTotalEnergy() >> 528 // << G4endl; >> 529 } >> 530 delete (*cascaders)[i]; >> 531 } >> 532 if(cascaders) delete cascaders; >> 533 >> 534 G4ping debug1("debug_G4BinaryLightIonReactionResults"); >> 535 debug1.push_back("Result analysis, secondaries"); >> 536 debug1.push_back(theResult.GetNumberOfSecondaries()); >> 537 debug1.dump(); >> 538 debug1.push_back(" Energy conservation initial/final/delta(init-final) "); >> 539 debug1.push_back(aTrack.GetTotalEnergy() + m_nucl); >> 540 debug1.push_back(aTrack.GetTotalEnergy()); >> 541 debug1.push_back(m_nucl); >> 542 debug1.push_back(Etot); >> 543 debug1.push_back(aTrack.GetTotalEnergy() + m_nucl - Etot); >> 544 debug1.dump(); 724 545 725 // correct p/E of Cascade secondaries << 546 if(getenv("BLICDEBUG") ) G4cerr << " ######### Binary Light Ion Reaction number ends ######### "<<eventcounter<<G4endl; 726 G4LorentzVector pCas=pInitialState - pFragm << 727 547 728 //G4cout <<"BLIC: Going to correct from << 548 return &theResult; 729 // the creation of excited fragment did vi << 549 } 730 G4bool EnergyIsCorrect=EnergyAndMomentumCor << 731 if ( ! EnergyIsCorrect && debug_G4BinaryLig << 732 { << 733 G4cout << "G4BinaryLightIonReaction E/P << 734 } << 735 550 736 // Add deexcitation secondaries << 551 //**************************************************************************** 737 if(proFrag) << 552 G4bool G4BinaryLightIonReaction::EnergyAndMomentumCorrector( 738 { << 553 G4ReactionProductVector* Output, G4LorentzVector& TotalCollisionMom) 739 for(ii=proFrag->begin(); ii!=proFrag->en << 554 //**************************************************************************** >> 555 { >> 556 const int nAttemptScale = 2500; >> 557 const double ErrLimit = 1.E-6; >> 558 if (Output->empty()) >> 559 return TRUE; >> 560 G4LorentzVector SumMom(0); >> 561 G4double SumMass = 0; >> 562 G4double TotalCollisionMass = TotalCollisionMom.m(); >> 563 size_t i = 0; >> 564 // Calculate sum hadron 4-momenta and summing hadron mass >> 565 for(i = 0; i < Output->size(); i++) >> 566 { >> 567 SumMom += G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy()); >> 568 SumMass += (*Output)[i]->GetDefinition()->GetPDGMass(); >> 569 } >> 570 // G4cout << " E/P corrector, SumMass, SumMom.m2, TotalMass " >> 571 // << SumMass <<" "<< SumMom.m2() <<" "<<TotalCollisionMass<< G4endl; >> 572 if (SumMass > TotalCollisionMass) return FALSE; >> 573 SumMass = SumMom.m2(); >> 574 if (SumMass < 0) return FALSE; >> 575 SumMass = sqrt(SumMass); >> 576 >> 577 // Compute c.m.s. hadron velocity and boost KTV to hadron c.m.s. >> 578 G4ThreeVector Beta = -SumMom.boostVector(); >> 579 // G4cout << " == pre boost 2 "<< SumMom.e()<< " "<< SumMom.mag()<<" "<< Beta <<G4endl; >> 580 //--old Output->Boost(Beta); >> 581 for(i = 0; i < Output->size(); i++) >> 582 { >> 583 G4LorentzVector mom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy()); >> 584 mom *= Beta; >> 585 (*Output)[i]->SetMomentum(mom.vect()); >> 586 (*Output)[i]->SetTotalEnergy(mom.e()); >> 587 } >> 588 >> 589 // Scale total c.m.s. hadron energy (hadron system mass). >> 590 // It should be equal interaction mass >> 591 G4double Scale = 0,OldScale=0; >> 592 G4double factor = 1.; >> 593 G4int cAttempt = 0; >> 594 G4double Sum = 0; >> 595 G4bool success = false; >> 596 for(cAttempt = 0; cAttempt < nAttemptScale; cAttempt++) >> 597 { >> 598 Sum = 0; >> 599 for(i = 0; i < Output->size(); i++) 740 { 600 { 741 cascaders->push_back(*ii); << 601 G4LorentzVector HadronMom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy()); >> 602 HadronMom.setVect(HadronMom.vect()+ factor*Scale*HadronMom.vect()); >> 603 G4double E = sqrt(HadronMom.vect().mag2() + sqr((*Output)[i]->GetDefinition()->GetPDGMass())); >> 604 HadronMom.setE(E); >> 605 (*Output)[i]->SetMomentum(HadronMom.vect()); >> 606 (*Output)[i]->SetTotalEnergy(HadronMom.e()); >> 607 Sum += E; 742 } 608 } 743 delete proFrag; << 609 OldScale=Scale; 744 } << 610 Scale = TotalCollisionMass/Sum - 1; 745 //G4cout << "EnergyIsCorrect? " << Energ << 611 if ( cAttempt > 10 ) 746 if ( ! EnergyIsCorrect ) << 612 { 747 { << 613 // G4cout << " speed it up? " << abs(OldScale/(OldScale-Scale)) << G4endl; 748 // G4cout <<" ! EnergyIsCorrect " << << 614 factor=std::max(1.,log(abs(OldScale/(OldScale-Scale)))); 749 if (! EnergyAndMomentumCorrector(cascade << 615 // G4cout << " ? factor ? " << factor << G4endl; >> 616 } >> 617 // G4cout << "E/P corr - " << cAttempt << " " << Scale << G4endl; >> 618 if (abs(Scale) <= ErrLimit) 750 { 619 { 751 if(debug_G4BinaryLightIonReactionResu << 620 if (getenv("debug_G4BinaryLightIonReactionResults")) G4cout << "E/p corrector: " << cAttempt << G4endl; 752 G4cout << "G4BinaryLightIonReactio << 621 success = true; >> 622 break; 753 } 623 } 754 } << 624 } 755 << 625 756 } << 626 if( (!success) && getenv("debug_G4BinaryLightIonReactionResults")) 757 << 627 { >> 628 G4cout << "G4G4BinaryLightIonReaction::EnergyAndMomentumCorrector - Warning"<<G4endl; >> 629 G4cout << " Scale not unity at end of iteration loop: "<<TotalCollisionMass<<" "<<Sum<<" "<<Scale<<G4endl; >> 630 G4cout << " Increase number of attempts or increase ERRLIMIT"<<G4endl; >> 631 } >> 632 >> 633 // Compute c.m.s. interaction velocity and KTV back boost >> 634 Beta = TotalCollisionMom.boostVector(); >> 635 //--old Output->Boost(Beta); >> 636 for(i = 0; i < Output->size(); i++) >> 637 { >> 638 G4LorentzVector mom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy()); >> 639 mom *= Beta; >> 640 (*Output)[i]->SetMomentum(mom.vect()); >> 641 (*Output)[i]->SetTotalEnergy(mom.e()); >> 642 } >> 643 return TRUE; >> 644 } 758 645