Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 7 // >> 8 // $Id: G4EnergyRangeManager.cc,v 1.3 1999/12/15 14:52:07 gunter Exp $ >> 9 // GEANT4 tag $Name: geant4-03-00 $ 26 // 10 // 27 // Hadronic Process: Energy Range Manager 11 // Hadronic Process: Energy Range Manager 28 // original by H.P. Wellisch 12 // original by H.P. Wellisch 29 // modified by J.L. Chuma, TRIUMF, 22-Nov-199 13 // modified by J.L. Chuma, TRIUMF, 22-Nov-1996 30 // Last modified: 24-Mar-1997 14 // Last modified: 24-Mar-1997 31 // fix in the counter-hndling: H.P. Wellisch 15 // fix in the counter-hndling: H.P. Wellisch 04-Apr-97 32 // throw an exception if no model found: J.L 16 // throw an exception if no model found: J.L. Chuma 04-Apr-97 33 17 34 #include "G4EnergyRangeManager.hh" 18 #include "G4EnergyRangeManager.hh" 35 #include "Randomize.hh" 19 #include "Randomize.hh" 36 #include "G4HadronicException.hh" << 20 37 #include "G4SystemOfUnits.hh" << 21 G4EnergyRangeManager::G4EnergyRangeManager( 38 << 22 const G4EnergyRangeManager &right ) 39 G4EnergyRangeManager::G4EnergyRangeManager() << 23 { 40 : theHadronicInteractionCounter(0) << 24 if( this != &right ) 41 {} << 25 { 42 << 26 for( G4int i=0; i<theHadronicInteractionCounter; ++i ) 43 G4EnergyRangeManager::~G4EnergyRangeManager() << 27 theHadronicInteraction[i] = right.theHadronicInteraction[i]; 44 {} << 28 theHadronicInteractionCounter = right.theHadronicInteractionCounter; 45 << 46 void G4EnergyRangeManager::RegisterMe(G4Hadron << 47 { << 48 if(!a) { return; } << 49 if(0 < theHadronicInteractionCounter) { << 50 for(G4int i=0; i<theHadronicInteractionCou << 51 if(a == theHadronicInteraction[i]) { ret << 52 } 29 } 53 } 30 } 54 theHadronicInteraction.push_back(a); << 31 55 ++theHadronicInteractionCounter; << 32 G4EnergyRangeManager & 56 } << 33 G4EnergyRangeManager::operator=( 57 << 34 const G4EnergyRangeManager &right ) 58 G4HadronicInteraction* << 35 { 59 G4EnergyRangeManager::GetHadronicInteraction(c << 36 if( this != &right ) 60 G << 37 { 61 c << 38 for( G4int i=0; i<theHadronicInteractionCounter; ++i ) 62 c << 39 theHadronicInteraction[i] = 63 { << 40 right.theHadronicInteraction[i]; 64 // VI shortcut: if only one interaction is r << 41 theHadronicInteractionCounter = 65 if(1 == theHadronicInteractionCounter) { ret << 42 right.theHadronicInteractionCounter; 66 else if(0 == theHadronicInteractionCounter) << 43 } 67 G4cout << "G4EnergyRangeManager::GetHadron << 44 return *this; 68 << "no models defined for a process" << G << 69 return nullptr; << 70 } 45 } 71 << 46 72 G4double kineticEnergy = aHadProjectile.GetK << 47 void 73 // For ions, get kinetic energy per nucleon << 48 G4EnergyRangeManager::RegisterMe( 74 if ( std::abs( aHadProjectile.GetDefinition( << 49 G4HadronicInteraction *a ) 75 kineticEnergy /= static_cast< G4double >( << 50 { >> 51 if( theHadronicInteractionCounter+1 > MAX_NUMBER_OF_MODELS ) >> 52 G4Exception( >> 53 "EnergyRangeManager::RegisterMe: TOO MANY MODELS"); >> 54 theHadronicInteraction[ theHadronicInteractionCounter++ ] = a; 76 } 55 } 77 << 56 78 G4int cou = 0, memory = 0, memor2 = 0; << 57 G4HadronicInteraction * 79 G4double emi1 = 0.0, ema1 = 0.0, emi2 = 0.0, << 58 G4EnergyRangeManager::GetHadronicInteraction( 80 << 59 const G4double kineticEnergy, 81 for (G4int i = 0; i<theHadronicInteractionCo << 60 const G4Material *aMaterial, 82 if ( theHadronicInteraction[i]->IsApplicab << 61 const G4Element *anElement ) const >> 62 { >> 63 G4int counter = GetHadronicInteractionCounter(); >> 64 if( counter == 0 ) >> 65 G4Exception("GetHadronicInteraction: NO MODELS STORED"); >> 66 >> 67 G4int cou = 0, memory = 0, memor2 = 0; >> 68 G4double emi1 = 0.0, ema1 = 0.0, emi2 = 0.0, ema2 = 0.0; >> 69 for( G4int i=0; i<counter; i++ ) { 83 G4double low = theHadronicInteraction[i 70 G4double low = theHadronicInteraction[i]->GetMinEnergy( aMaterial, anElement ); >> 71 // Work-around for particles with 0 kinetic energy, which still >> 72 // require a model to return a ParticleChange >> 73 if (low == 0.) low = -DBL_MIN; 84 G4double high = theHadronicInteraction[i 74 G4double high = theHadronicInteraction[i]->GetMaxEnergy( aMaterial, anElement ); 85 if (low <= kineticEnergy && high >= kine << 75 if( low < kineticEnergy && high >= kineticEnergy ) >> 76 { 86 ++cou; 77 ++cou; 87 emi2 = emi1; 78 emi2 = emi1; 88 ema2 = ema1; 79 ema2 = ema1; 89 emi1 = low; 80 emi1 = low; 90 ema1 = high; 81 ema1 = high; 91 memor2 = memory; 82 memor2 = memory; 92 memory = i; 83 memory = i; 93 } 84 } 94 } 85 } 95 } << 86 G4int m; 96 << 87 G4double rand; 97 G4HadronicInteraction* hi = nullptr; << 88 switch ( cou ) 98 switch (cou) { << 89 { 99 case 0: << 90 case 0: 100 G4cout << "No model found out of " << th << 91 G4Exception("GetHadronicInteraction: No model found for this energy range"); 101 for( G4int j=0; j<theHadronicInteraction << 92 return 0; 102 G4HadronicInteraction* hint=theHadronicInter << 93 case 1: 103 G4cout << " "<< j << ". Elow= " << hint-> << 94 m = memory; 104 <<", Ehigh= " << hint->GetMaxEnergy(a << 95 break; 105 <<" " << hint->GetModelName() << G4 << 96 case 2: 106 } << 97 if( (emi2<=emi1 && ema2>=ema1) || (emi2>=emi1 && ema2<=ema1) ) 107 break; << 98 G4Exception( 108 << 99 "GetHadronicInteraction: Energy ranges of two models fully overlapping"); 109 case 1: << 100 rand = G4UniformRand(); 110 hi = theHadronicInteraction[memory]; << 101 if( emi1 < emi2 ) 111 break; << 102 { 112 << 103 if( (ema1-kineticEnergy)/(ema1-emi2)<rand ) 113 case 2: << 104 m = memor2; 114 if( (emi2<=emi1 && ema2>=ema1) || (emi2> << 105 else 115 G4cout << "Energy ranges of two models fully << 106 m = memory; 116 for( G4int j=0; j<theHadronicInteractionCoun << 107 } else { 117 G4HadronicInteraction* hint=theHadronicInt << 108 if( (ema2-kineticEnergy)/(ema2-emi1)<rand ) 118 G4cout << " "<< j << ". Elow= " << hint << 109 m = memory; 119 <<", Ehigh= " << hint->GetMaxEnergy(aMate << 110 else 120 <<" " << hint->GetModelName() << G4endl << 111 m = memor2; 121 } << 112 } 122 } else { << 113 break; 123 G4double rand = G4UniformRand(); << 114 default: 124 G4int mem; << 115 G4Exception( 125 if( emi1 < emi2 ) { << 116 "GetHadronicInteraction: More than two competing models in this energy range"); 126 if( (ema1-kineticEnergy) < rand*(ema1-emi2 << 127 mem = memor2; << 128 } else { << 129 mem = memory; << 130 } << 131 } else { << 132 if( (ema2-kineticEnergy) < rand*(ema2-emi1 << 133 mem = memory; << 134 } else { << 135 mem = memor2; << 136 } << 137 } << 138 hi = theHadronicInteraction[mem]; << 139 } << 140 break; << 141 << 142 default: << 143 G4cout << "More than two competing model << 144 for( G4int j=0; j<theHadronicInteraction << 145 G4HadronicInteraction* hint=theHadronicInter << 146 G4cout << " "<< j << ". Elow= " << hint-> << 147 <<", Ehigh= " << hint->GetMaxEnergy(a << 148 <<" " << hint->GetModelName() << G4 << 149 } << 150 break; << 151 } << 152 return hi; << 153 } << 154 << 155 std::vector<G4HadronicInteraction*>& << 156 G4EnergyRangeManager::GetHadronicInteractionLi << 157 { << 158 return theHadronicInteraction; << 159 } << 160 << 161 void G4EnergyRangeManager::Dump( G4int verbose << 162 { << 163 G4cout << "G4EnergyRangeManager " << this << << 164 for (G4int i = 0 ; i < theHadronicInteractio << 165 G4cout << " HadronicModel " << i <<":" << 166 << theHadronicInteraction[i]->GetMo << 167 if (verbose > 0) { << 168 G4cout << " Minimum Energy " << 169 << theHadronicInteraction[i]->GetMinEne << 170 << "Maximum Energy " << 171 << theHadronicInteraction[i]->GetMaxEne << 172 << G4endl; << 173 } 117 } 174 } << 118 return theHadronicInteraction[m]; 175 } << 119 } 176 << 120 177 void << 121 /* end of file */ 178 G4EnergyRangeManager::BuildPhysicsTable(const << 179 { << 180 for (auto & hadi : theHadronicInteraction) { << 181 hadi->BuildPhysicsTable( aParticleType ); << 182 } << 183 } << 184 << 185 122 186 123