Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ >> 27 // 26 // ------------------------------------------- 28 // ------------------------------------------------------------------- 27 // 29 // 28 // GEANT4 Class file 30 // GEANT4 Class file 29 // 31 // 30 // 32 // 31 // File name: G4NeutronInelasticXS 33 // File name: G4NeutronInelasticXS 32 // 34 // 33 // Author Ivantchenko, Geant4, 3-Aug-09 35 // Author Ivantchenko, Geant4, 3-Aug-09 34 // 36 // >> 37 // Modifications: >> 38 // 35 39 >> 40 #include "G4HadronicException.hh" 36 #include "G4NeutronInelasticXS.hh" 41 #include "G4NeutronInelasticXS.hh" 37 #include "G4Neutron.hh" 42 #include "G4Neutron.hh" 38 #include "G4DynamicParticle.hh" 43 #include "G4DynamicParticle.hh" 39 #include "G4ElementTable.hh" << 40 #include "G4Material.hh" << 41 #include "G4Element.hh" 44 #include "G4Element.hh" >> 45 #include "G4ElementTable.hh" 42 #include "G4PhysicsLogVector.hh" 46 #include "G4PhysicsLogVector.hh" 43 #include "G4CrossSectionDataSetRegistry.hh" << 47 #include "G4PhysicsVector.hh" 44 #include "G4ComponentGGHadronNucleusXsc.hh" << 48 #include "G4GlauberGribovCrossSection.hh" 45 #include "G4HadronicParameters.hh" << 49 #include "G4HadronNucleonXsc.hh" >> 50 #include "G4NistManager.hh" >> 51 #include "G4Proton.hh" 46 #include "Randomize.hh" 52 #include "Randomize.hh" 47 #include "G4Neutron.hh" << 48 #include "G4SystemOfUnits.hh" << 49 #include "G4IsotopeList.hh" << 50 #include "G4NuclearRadii.hh" << 51 #include "G4AutoLock.hh" << 52 53 >> 54 #include <iostream> 53 #include <fstream> 55 #include <fstream> 54 #include <sstream> 56 #include <sstream> 55 #include <thread> << 56 << 57 G4double G4NeutronInelasticXS::coeff[] = {1.0} << 58 G4double G4NeutronInelasticXS::lowcoeff[] = {1 << 59 G4ElementData* G4NeutronInelasticXS::data = nu << 60 G4String G4NeutronInelasticXS::gDataDirectory << 61 << 62 static std::once_flag applyOnce; << 63 57 64 namespace << 58 using namespace std; 65 { << 66 G4Mutex nInelasticXSMutex = G4MUTEX_INITIALI << 67 } << 68 59 69 G4NeutronInelasticXS::G4NeutronInelasticXS() 60 G4NeutronInelasticXS::G4NeutronInelasticXS() 70 : G4VCrossSectionDataSet(Default_Name()), << 61 : G4VCrossSectionDataSet("G4NeutronInelasticXS"), 71 neutron(G4Neutron::Neutron()), << 62 proton(G4Proton::Proton()), maxZ(92) 72 elimit(20*CLHEP::MeV), << 73 lowElimit(1.0e-7*CLHEP::eV) << 74 { 63 { 75 verboseLevel = 0; << 64 // verboseLevel = 0; 76 if (verboseLevel > 0) { << 65 if(verboseLevel > 0){ 77 G4cout << "G4NeutronInelasticXS::G4Neutron << 66 G4cout << "G4NeutronInelasticXS::G4NeutronInelasticXS Initialise for Z < " 78 << MAXZINEL << G4endl; << 67 << maxZ + 1 << G4endl; 79 } << 68 } 80 loglowElimit = G4Log(lowElimit); << 69 data.resize(maxZ+1, 0); 81 if (nullptr == data) { << 70 coeff.resize(maxZ+1, 1.0); 82 data = new G4ElementData(MAXZINEL); << 71 ggXsection = new G4GlauberGribovCrossSection(); 83 data->SetName("nInelastic"); << 72 fNucleon = new G4HadronNucleonXsc(); 84 FindDirectoryPath(); << 73 isInitialized = false; 85 } << 74 } 86 ggXsection = << 75 87 G4CrossSectionDataSetRegistry::Instance()- << 76 G4NeutronInelasticXS::~G4NeutronInelasticXS() 88 if(ggXsection == nullptr) << 77 { 89 ggXsection = new G4ComponentGGHadronNucleu << 78 delete fNucleon; 90 << 79 for(G4int i=0; i<=maxZ; ++i) { 91 SetForAllAtomsAndEnergies(true); << 80 delete data[i]; >> 81 } 92 } 82 } 93 83 94 void G4NeutronInelasticXS::CrossSectionDescrip 84 void G4NeutronInelasticXS::CrossSectionDescription(std::ostream& outFile) const 95 { 85 { 96 outFile << "G4NeutronInelasticXS calculates 86 outFile << "G4NeutronInelasticXS calculates the neutron inelastic scattering\n" 97 << "cross section on nuclei using da 87 << "cross section on nuclei using data from the high precision\n" 98 << "neutron database. These data ar 88 << "neutron database. These data are simplified and smoothed over\n" 99 << "the resonance region in order to 89 << "the resonance region in order to reduce CPU time.\n" 100 << "For high energy Glauber-Gribov c << 90 << "G4NeutronInelasticXS is valid for energies up to 20 MeV, for\n" >> 91 << "nuclei through U.\n"; 101 } 92 } 102 93 103 G4bool 94 G4bool 104 G4NeutronInelasticXS::IsElementApplicable(cons 95 G4NeutronInelasticXS::IsElementApplicable(const G4DynamicParticle*, 105 G4in << 96 G4int, const G4Material*) 106 { 97 { 107 return true; 98 return true; 108 } 99 } 109 100 110 G4bool 101 G4bool 111 G4NeutronInelasticXS::IsIsoApplicable(const G4 102 G4NeutronInelasticXS::IsIsoApplicable(const G4DynamicParticle*, 112 G4int, G << 103 G4int /*ZZ*/, G4int /*AA*/, 113 const G4 << 104 const G4Element*, const G4Material*) 114 { 105 { 115 return true; << 106 return false; 116 } 107 } 117 108 118 G4double 109 G4double 119 G4NeutronInelasticXS::GetElementCrossSection(c 110 G4NeutronInelasticXS::GetElementCrossSection(const G4DynamicParticle* aParticle, 120 G << 111 G4int Z, const G4Material*) 121 { 112 { 122 return ElementCrossSection(aParticle->GetKin << 113 G4double xs = 0.0; 123 aParticle->GetLog << 114 G4double ekin = aParticle->GetKineticEnergy(); 124 } << 125 115 126 G4double << 116 if(Z < 1 || Z > maxZ) { return xs; } 127 G4NeutronInelasticXS::ComputeCrossSectionPerEl << 117 G4int Amean = G4int(G4NistManager::Instance()->GetAtomicMassAmu(Z)+0.5); 128 << 118 G4PhysicsVector* pv = data[Z]; 129 << 119 // G4cout << "G4NeutronInelasticXS::GetCrossSection e= " << ekin << " Z= " << Z << G4endl; 130 << 120 131 { << 121 // element was not initialised 132 return ElementCrossSection(ekin, loge, elm-> << 122 if(!pv) { 133 } << 123 Initialise(Z); >> 124 pv = data[Z]; >> 125 if(!pv) { return xs; } >> 126 } >> 127 >> 128 G4double e1 = pv->Energy(0); >> 129 if(ekin <= e1) { return xs; } >> 130 >> 131 G4int n = pv->GetVectorLength() - 1; >> 132 G4double e2 = pv->Energy(n); >> 133 if(ekin <= e2) { >> 134 xs = pv->Value(ekin); >> 135 } else if(1 == Z) { >> 136 fNucleon->GetHadronNucleonXscPDG(aParticle, proton); >> 137 xs = coeff[1]*fNucleon->GetInelasticHadronNucleonXsc(); >> 138 } else { >> 139 ggXsection->GetIsoCrossSection(aParticle, Z, Amean); >> 140 xs = coeff[Z]*ggXsection->GetInelasticGlauberGribovXsc(); >> 141 } 134 142 135 G4double << 143 if(verboseLevel > 0) { 136 G4NeutronInelasticXS::ElementCrossSection(G4do << 144 G4cout << "ekin= " << ekin << ", XSinel= " << xs << G4endl; 137 { << 138 G4int Z = std::min(ZZ, MAXZINEL-1); << 139 G4double ekin = eKin; << 140 G4double loge = logE; << 141 G4double xs; << 142 << 143 // very low energy limit << 144 if (ekin < lowElimit) { << 145 ekin = lowElimit; << 146 loge = loglowElimit; << 147 } << 148 // pv should exist << 149 auto pv = GetPhysicsVector(Z); << 150 << 151 const G4double e0 = pv->Energy(0); << 152 if (ekin <= e0) { << 153 xs = (*pv)[0]; << 154 if (xs > 0.0) { xs *= std::sqrt(e0/ekin); << 155 } else if (ekin <= pv->GetMaxEnergy()) { << 156 xs = pv->LogVectorValue(ekin, loge); << 157 } else { << 158 xs = coeff[Z]*ggXsection->GetInelasticElem << 159 << 160 } << 161 << 162 #ifdef G4VERBOSE << 163 if(verboseLevel > 1) { << 164 G4cout << "G4NeutronInelasticXS::ElementC << 165 << " Ekin(MeV)= " << ekin/CLHEP::M << 166 << ", ElmXSinel(b)= " << xs/CLHEP: << 167 << G4endl; << 168 } 145 } 169 #endif << 170 return xs; 146 return xs; 171 } 147 } 172 148 173 G4double << 149 /* 174 G4NeutronInelasticXS::ComputeIsoCrossSection(G << 150 G4double 175 c << 176 G << 177 c << 178 c << 179 { << 180 return IsoCrossSection(ekin, loge, Z, A); << 181 } << 182 << 183 G4double << 184 G4NeutronInelasticXS::GetIsoCrossSection(const 151 G4NeutronInelasticXS::GetIsoCrossSection(const G4DynamicParticle* aParticle, 185 G4int << 152 G4int Z, G4int A, 186 const << 153 const G4Isotope*, const G4Element*, 187 const << 154 const G4Material*) 188 { << 155 { 189 return IsoCrossSection(aParticle->GetKinetic << 156 G4double xs = 0.0; 190 aParticle->GetLogKine << 157 G4double ekin = aParticle->GetKineticEnergy(); 191 } << 158 if(ekin > emax || Z < 1 || Z > maxZ) { return xs; } 192 << 159 const G4double elimit = 1.0e-10*eV; 193 G4double << 160 if(ekin < elimit) { ekin = elimit; } 194 G4NeutronInelasticXS::IsoCrossSection(G4double << 161 195 G4int ZZ << 162 // G4PhysicsVector* pv = data[Z]; 196 { << 163 G4PhysicsVector* pv = data.GetElementData(Z); 197 G4double xs; << 164 198 G4int Z = std::min(ZZ, MAXZINEL-1); << 165 // element was not initialised 199 G4double ekin = eKin; << 166 if(!pv) { 200 G4double loge = logE; << 167 Initialise(Z); 201 << 168 // pv = data[Z]; 202 /* << 169 pv = data.GetElementData(Z); 203 G4cout << "G4NeutronInelasticXS::IsoCrossSec << 170 if(!pv) { return xs; } 204 << Z << " A= " << A << G4endl; << 205 G4cout << " Amin= " << amin[Z] << " Amax= " << 206 << " E(MeV)= " << ekin << " Ncomp=" << 207 << data->GetNumberOfComponents(Z) << << 208 */ << 209 GetPhysicsVector(Z); << 210 << 211 // use isotope cross section if applicable << 212 if (ekin <= elimit && data->GetNumberOfCompo << 213 auto pviso = data->GetComponentDataByID(Z, << 214 if (nullptr != pviso) { << 215 const G4double e0 = pviso->Energy(0); << 216 if (ekin > e0) { << 217 xs = pviso->LogVectorValue(ekin, loge) << 218 } else { << 219 xs = (*pviso)[0]; << 220 if (xs > 0.0) { xs *= std::sqrt(e0/eki << 221 } << 222 #ifdef G4VERBOSE << 223 if(verboseLevel > 1) { << 224 G4cout << "G4NeutronInelasticXS::IsoXS << 225 << ekin/CLHEP::MeV << 226 << " xs(b)= " << xs/CLHEP::bar << 227 << " Z= " << Z << " A= " << A << 228 } << 229 #endif << 230 return xs; << 231 } << 232 } 171 } >> 172 pv = data.GetComponentDataByID(Z, A); >> 173 if(!pv) { return xs; } 233 174 234 // use element x-section << 175 xs = pv->Value(ekin); 235 xs = ElementCrossSection(ekin, loge, Z)*A/ae << 236 176 237 #ifdef G4VERBOSE << 177 if(verboseLevel > 0){ 238 if(verboseLevel > 1) { << 178 G4cout << "ekin= " << ekin << ", xs= " << xs << G4endl; 239 G4cout << "G4NeutronInelasticXS::IsoXS: Z << 240 << " Ekin(MeV)= " << ekin/CLHEP::M << 241 << ", ElmXS(b)= " << xs/CLHEP::bar << 242 } 179 } 243 #endif << 244 return xs; 180 return xs; 245 } 181 } 246 182 247 const G4Isotope* G4NeutronInelasticXS::SelectI << 183 G4Isotope* G4NeutronInelasticXS::SelectIsotope(const G4Element* anElement, 248 const G4Element* anElement, G4double kin << 184 G4double kinEnergy) 249 { 185 { 250 std::size_t nIso = anElement->GetNumberOfIso << 186 G4int nIso = anElement->GetNumberOfIsotopes(); 251 const G4Isotope* iso = anElement->GetIsotope << 187 G4IsotopeVector* isoVector = anElement->GetIsotopeVector(); 252 if(1 == nIso) { return iso; } << 188 G4Isotope* iso = (*isoVector)[0]; 253 189 254 // more than 1 isotope 190 // more than 1 isotope 255 G4int Z = anElement->GetZasInt(); << 191 if(1 < nIso) { 256 if (nullptr == data->GetElementData(Z)) { In << 192 G4int Z = G4lrint(anElement->GetZ()); 257 << 193 if(Z > maxZ) { Z = maxZ; } 258 const G4double* abundVector = anElement->Get << 194 G4double* abundVector = anElement->GetRelativeAbundanceVector(); 259 G4double q = G4UniformRand(); << 195 G4double q = G4UniformRand(); 260 G4double sum = 0.0; << 196 G4double sum = 0.0; 261 std::size_t j; << 197 262 << 198 // is there isotope wise cross section? 263 // isotope wise cross section not available << 199 if(0 == amin[Z]) { 264 if (Z >= MAXZINEL || 0 == data->GetNumberOfC << 200 for (G4int j = 0; j<nIso; ++j) { 265 for (j=0; j<nIso; ++j) { << 201 sum += abundVector[j]; 266 sum += abundVector[j]; << 202 if(q <= sum) { 267 if(q <= sum) { << 203 iso = (*isoVector)[j]; 268 iso = anElement->GetIsotope((G4int)j); << 204 break; 269 break; << 205 } >> 206 } >> 207 } else { >> 208 size_t nmax = data.GetNumberOfComponents(Z); >> 209 if(temp.size() < nmax) { temp.resize(nmax,0.0); } >> 210 for (size_t i=0; i<nmax; ++i) { >> 211 G4int A = (*isoVector)[i]->GetN(); >> 212 G4PhysicsVector* v = data.GetComponentDataByID(Z, A); >> 213 if(v) { sum += abundVector[i]*v->Value(kinEnergy); } >> 214 temp[i] = sum; >> 215 } >> 216 sum *= q; >> 217 for (size_t j = 0; j<nmax; ++j) { >> 218 if(temp[j] >= sum) { >> 219 iso = (*isoVector)[j]; >> 220 break; >> 221 } 270 } 222 } 271 } << 272 return iso; << 273 } << 274 << 275 // use isotope cross sections << 276 auto nn = temp.size(); << 277 if(nn < nIso) { temp.resize(nIso, 0.); } << 278 << 279 for (j=0; j<nIso; ++j) { << 280 // G4cout << j << "-th isotope " << anElem << 281 // << " abund= " << abundVector[j] << 282 sum += abundVector[j]*IsoCrossSection(kinE << 283 anEl << 284 temp[j] = sum; << 285 } << 286 sum *= q; << 287 for (j = 0; j<nIso; ++j) { << 288 if (temp[j] >= sum) { << 289 iso = anElement->GetIsotope((G4int)j); << 290 break; << 291 } 223 } 292 } 224 } 293 return iso; 225 return iso; 294 } 226 } 295 << 227 */ 296 void 228 void 297 G4NeutronInelasticXS::BuildPhysicsTable(const 229 G4NeutronInelasticXS::BuildPhysicsTable(const G4ParticleDefinition& p) 298 { 230 { 299 if (verboseLevel > 0) { << 231 if(isInitialized) { return; } 300 G4cout << "G4NeutronInelasticXS::BuildPhys << 232 if(verboseLevel > 0){ 301 << p.GetParticleName() << G4endl; << 233 G4cout << "G4NeutronCaptureXS::BuildPhysicsTable for " 302 } << 234 << p.GetParticleName() << G4endl; 303 if (p.GetParticleName() != "neutron") { << 235 } 304 G4ExceptionDescription ed; << 236 if(p.GetParticleName() != "neutron") { 305 ed << p.GetParticleName() << " is a wrong << 237 throw G4HadronicException(__FILE__, __LINE__,"Wrong particle type"); 306 << " only neutron is allowed"; << 307 G4Exception("G4NeutronInelasticXS::BuildPh << 308 FatalException, ed, ""); << 309 return; 238 return; 310 } 239 } 311 // it is possible re-initialisation for the << 240 isInitialized = true; 312 const G4ElementTable* table = G4Element::Get << 313 << 314 // initialise static tables only once << 315 std::call_once(applyOnce, [this]() { isIniti << 316 241 317 if (isInitializer) { << 242 // check environment variable 318 G4AutoLock l(&nInelasticXSMutex); << 243 // Build the complete string identifying the file with the data set 319 << 244 char* path = getenv("G4NEUTRONXSDATA"); 320 // Upload data for elements used in geomet << 245 if (!path){ 321 for ( auto const & elm : *table ) { << 246 throw G4HadronicException(__FILE__, __LINE__, 322 G4int Z = std::max( 1, std::min( elm->Ge << 247 "G4NEUTRONXSDATA environment variable not defined"); 323 if ( nullptr == data->GetElementData(Z) << 248 return; >> 249 } >> 250 >> 251 G4DynamicParticle* dynParticle = >> 252 new G4DynamicParticle(G4Neutron::Neutron(),G4ThreeVector(1,0,0),1); >> 253 >> 254 // Access to elements >> 255 const G4ElementTable* theElmTable = G4Element::GetElementTable(); >> 256 size_t numOfElm = G4Element::GetNumberOfElements(); >> 257 if(numOfElm > 0) { >> 258 for(size_t i=0; i<numOfElm; ++i) { >> 259 G4int Z = G4int(((*theElmTable)[i])->GetZ()); >> 260 if(Z < 1) { Z = 1; } >> 261 else if(Z > maxZ) { Z = maxZ; } >> 262 //G4cout << "Z= " << Z << G4endl; >> 263 // Initialisation >> 264 if(!data[Z]) { Initialise(Z, dynParticle, path); } 324 } 265 } 325 l.unlock(); << 326 } << 327 // prepare isotope selection << 328 std::size_t nIso = temp.size(); << 329 for ( auto const & elm : *table ) { << 330 std::size_t n = elm->GetNumberOfIsotopes() << 331 if (n > nIso) { nIso = n; } << 332 } 266 } 333 temp.resize(nIso, 0.0); << 267 delete dynParticle; 334 } 268 } 335 269 336 const G4String& G4NeutronInelasticXS::FindDire << 270 void >> 271 G4NeutronInelasticXS::Initialise(G4int Z, G4DynamicParticle* dp, >> 272 const char* p) 337 { 273 { 338 // build the complete string identifying the << 274 if(data[Z]) { return; } 339 if (gDataDirectory.empty()) { << 275 const char* path = p; 340 std::ostringstream ost; << 276 if(!p) { 341 ost << G4HadronicParameters::Instance()->G << 277 // check environment variable 342 gDataDirectory = ost.str(); << 278 // Build the complete string identifying the file with the data set >> 279 path = getenv("G4NEUTRONXSDATA"); >> 280 if (!path) { >> 281 throw G4HadronicException(__FILE__, __LINE__, >> 282 "G4NEUTRONXSDATA environment variable not defined"); >> 283 return; >> 284 } >> 285 } >> 286 G4DynamicParticle* dynParticle = dp; >> 287 if(!dp) { >> 288 dynParticle = >> 289 new G4DynamicParticle(G4Neutron::Neutron(),G4ThreeVector(1,0,0),1); 343 } 290 } 344 return gDataDirectory; << 345 } << 346 291 347 void G4NeutronInelasticXS::InitialiseOnFly(G4i << 292 G4int Amean = G4int(G4NistManager::Instance()->GetAtomicMassAmu(Z)+0.5); 348 { << 349 G4AutoLock l(&nInelasticXSMutex); << 350 Initialise(Z); << 351 l.unlock(); << 352 } << 353 293 354 void G4NeutronInelasticXS::Initialise(G4int Z) << 294 // upload data from file 355 { << 295 data[Z] = new G4PhysicsLogVector(); 356 if (nullptr != data->GetElementData(Z)) { re << 357 296 358 // upload element data << 359 std::ostringstream ost; 297 std::ostringstream ost; 360 ost << FindDirectoryPath() << Z; << 298 ost << path << "/inelast" << Z ; 361 G4PhysicsVector* v = RetrieveVector(ost, tru << 362 data->InitialiseForElement(Z, v); << 363 if (verboseLevel > 1) { << 364 G4cout << "G4NeutronInelasticXS::Initiali << 365 << " A= " << aeff[Z] << " Amin= " << 366 << " Amax= " << amax[Z] << G4endl << 367 } << 368 // upload isotope data << 369 G4bool noComp = true; << 370 if (amin[Z] < amax[Z]) { << 371 << 372 for (G4int A=amin[Z]; A<=amax[Z]; ++A) { << 373 std::ostringstream ost1; << 374 ost1 << gDataDirectory << Z << "_" << A; << 375 G4PhysicsVector* v1 = RetrieveVector(ost << 376 if (nullptr != v1) { << 377 if (noComp) { << 378 G4int nmax = amax[Z] - A + 1; << 379 data->InitialiseForComponent(Z, nmax << 380 noComp = false; << 381 } << 382 data->AddComponent(Z, A, v1); << 383 } << 384 } << 385 } << 386 // no components case << 387 if (noComp) { data->InitialiseForComponent(Z << 388 << 389 // smooth transition << 390 G4double sig1 = (*v)[v->GetVectorLength()-1] << 391 G4double ehigh= v->GetMaxEnergy(); << 392 G4double sig2 = ggXsection->GetInelasticElem << 393 ehigh, Z, aeff[Z << 394 coeff[Z] = (sig2 > 0.) ? sig1/sig2 : 1.0; << 395 } << 396 << 397 G4PhysicsVector* << 398 G4NeutronInelasticXS::RetrieveVector(std::ostr << 399 { << 400 G4PhysicsLogVector* v = nullptr; << 401 std::ifstream filein(ost.str().c_str()); 299 std::ifstream filein(ost.str().c_str()); 402 if (!filein.is_open()) { << 300 403 if(warn) { << 301 if (!(filein)) { 404 G4ExceptionDescription ed; << 302 throw G4HadronicException(__FILE__, __LINE__,"NO data sets opened"); 405 ed << "Data file <" << ost.str().c_str() << 303 return; 406 << "> is not opened!"; << 304 }else{ 407 G4Exception("G4NeutronInelasticXS::Retri << 408 FatalException, ed, "Check G << 409 } << 410 } else { << 411 if(verboseLevel > 1) { 305 if(verboseLevel > 1) { 412 G4cout << "File " << ost.str() << 306 G4cout << "file " << ost.str() 413 << " is opened by G4NeutronInelas << 307 << " is opened by G4NeutronInelasticXS" << G4endl; 414 } 308 } >> 309 415 // retrieve data from DB 310 // retrieve data from DB 416 v = new G4PhysicsLogVector(); << 311 data[Z]->Retrieve(filein, true); 417 if(!v->Retrieve(filein, true)) { << 312 418 G4ExceptionDescription ed; << 313 // smooth transition 419 ed << "Data file <" << ost.str().c_str() << 314 size_t n = data[Z]->GetVectorLength() - 1; 420 << "> is not retrieved!"; << 315 G4double emax = data[Z]->Energy(n); 421 G4Exception("G4NeutronInelasticXS::Retri << 316 G4double sig1 = (*data[Z])[n]; 422 FatalException, ed, "Check G << 317 dynParticle->SetKineticEnergy(emax); >> 318 G4double sig2 = 0.0; >> 319 if(1 == Z) { >> 320 fNucleon->GetHadronNucleonXscPDG(dynParticle, proton); >> 321 sig2 = fNucleon->GetInelasticHadronNucleonXsc(); >> 322 } else { >> 323 ggXsection->GetIsoCrossSection(dynParticle, Z, Amean); >> 324 sig2 = ggXsection->GetInelasticGlauberGribovXsc(); 423 } 325 } 424 } << 326 if(sig2 > 0.) { coeff[Z] = sig1/sig2; } 425 return v; << 327 } >> 328 if(!dp) { delete dynParticle; } 426 } 329 } 427 330