Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4NeutronInelasticXS.cc 71324 2013-06-13 16:58:55Z gcosmo $ >> 27 // 26 // ------------------------------------------- 28 // ------------------------------------------------------------------- 27 // 29 // 28 // GEANT4 Class file 30 // GEANT4 Class file 29 // 31 // 30 // 32 // 31 // File name: G4NeutronInelasticXS 33 // File name: G4NeutronInelasticXS 32 // 34 // 33 // Author Ivantchenko, Geant4, 3-Aug-09 35 // Author Ivantchenko, Geant4, 3-Aug-09 34 // 36 // >> 37 // Modifications: >> 38 // 35 39 36 #include "G4NeutronInelasticXS.hh" 40 #include "G4NeutronInelasticXS.hh" 37 #include "G4Neutron.hh" 41 #include "G4Neutron.hh" 38 #include "G4DynamicParticle.hh" 42 #include "G4DynamicParticle.hh" 39 #include "G4ElementTable.hh" << 40 #include "G4Material.hh" << 41 #include "G4Element.hh" 43 #include "G4Element.hh" >> 44 #include "G4ElementTable.hh" 42 #include "G4PhysicsLogVector.hh" 45 #include "G4PhysicsLogVector.hh" 43 #include "G4CrossSectionDataSetRegistry.hh" << 46 #include "G4PhysicsVector.hh" 44 #include "G4ComponentGGHadronNucleusXsc.hh" << 47 #include "G4GlauberGribovCrossSection.hh" 45 #include "G4HadronicParameters.hh" << 48 #include "G4HadronNucleonXsc.hh" >> 49 #include "G4NistManager.hh" >> 50 #include "G4Proton.hh" 46 #include "Randomize.hh" 51 #include "Randomize.hh" 47 #include "G4Neutron.hh" << 48 #include "G4SystemOfUnits.hh" << 49 #include "G4IsotopeList.hh" << 50 #include "G4NuclearRadii.hh" << 51 #include "G4AutoLock.hh" << 52 52 >> 53 #include <iostream> 53 #include <fstream> 54 #include <fstream> 54 #include <sstream> 55 #include <sstream> 55 #include <thread> << 56 56 57 G4double G4NeutronInelasticXS::coeff[] = {1.0} << 57 using namespace std; 58 G4double G4NeutronInelasticXS::lowcoeff[] = {1 << 59 G4ElementData* G4NeutronInelasticXS::data = nu << 60 G4String G4NeutronInelasticXS::gDataDirectory << 61 58 62 static std::once_flag applyOnce; << 59 const G4int G4NeutronInelasticXS::amin[] = {0, >> 60 0, 0, 6, 0,10,12,14,16, 0, 0, //1-10 >> 61 0, 0, 0,28, 0, 0, 0,36, 0,40, //11-20 >> 62 0, 0, 0, 0, 0,54, 0,58,63,64, //21-30 >> 63 0,70, 0, 0, 0, 0, 0, 0, 0,90, //31-40 >> 64 0, 0, 0, 0, 0, 0,107,106, 0,112, //41-50 >> 65 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //51-60 >> 66 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //61-70 >> 67 0, 0, 0,180, 0, 0, 0, 0, 0, 0, //71-80 >> 68 0,204, 0, 0, 0, 0, 0, 0, 0, 0, //81-90 >> 69 0,235}; >> 70 const G4int G4NeutronInelasticXS::amax[] = {0, >> 71 0, 0, 7, 0,11,13,15,18, 0, 0, //1-10 >> 72 0, 0, 0,30, 0, 0, 0,40, 0,48, //11-20 >> 73 0, 0, 0, 0, 0,58, 0,64,65,70, //21-30 >> 74 0,76, 0, 0, 0, 0, 0, 0, 0,96, //31-40 >> 75 0, 0, 0, 0, 0, 0,109,116, 0,124, //41-50 >> 76 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //51-60 >> 77 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //61-70 >> 78 0, 0, 0,186, 0, 0, 0, 0, 0, 0, //71-80 >> 79 0,208, 0, 0, 0, 0, 0, 0, 0, 0, //81-90 >> 80 0,238}; 63 81 64 namespace << 82 G4NeutronInelasticXS::G4NeutronInelasticXS() >> 83 : G4VCrossSectionDataSet("G4NeutronInelasticXS"), >> 84 proton(G4Proton::Proton()) 65 { 85 { 66 G4Mutex nInelasticXSMutex = G4MUTEX_INITIALI << 86 // verboseLevel = 0; >> 87 if(verboseLevel > 0){ >> 88 G4cout << "G4NeutronInelasticXS::G4NeutronInelasticXS Initialise for Z < " >> 89 << MAXZINEL << G4endl; >> 90 } >> 91 data.SetName("NeutronInelastic"); >> 92 work.resize(13,0); >> 93 temp.resize(13,0.0); >> 94 coeff.resize(MAXZINEL, 1.0); >> 95 ggXsection = new G4GlauberGribovCrossSection(); >> 96 fNucleon = new G4HadronNucleonXsc(); >> 97 isInitialized = false; 67 } 98 } 68 99 69 G4NeutronInelasticXS::G4NeutronInelasticXS() << 100 G4NeutronInelasticXS::~G4NeutronInelasticXS() 70 : G4VCrossSectionDataSet(Default_Name()), << 101 { 71 neutron(G4Neutron::Neutron()), << 102 delete fNucleon; 72 elimit(20*CLHEP::MeV), << 73 lowElimit(1.0e-7*CLHEP::eV) << 74 { << 75 verboseLevel = 0; << 76 if (verboseLevel > 0) { << 77 G4cout << "G4NeutronInelasticXS::G4Neutron << 78 << MAXZINEL << G4endl; << 79 } << 80 loglowElimit = G4Log(lowElimit); << 81 if (nullptr == data) { << 82 data = new G4ElementData(MAXZINEL); << 83 data->SetName("nInelastic"); << 84 FindDirectoryPath(); << 85 } << 86 ggXsection = << 87 G4CrossSectionDataSetRegistry::Instance()- << 88 if(ggXsection == nullptr) << 89 ggXsection = new G4ComponentGGHadronNucleu << 90 << 91 SetForAllAtomsAndEnergies(true); << 92 } 103 } 93 104 94 void G4NeutronInelasticXS::CrossSectionDescrip 105 void G4NeutronInelasticXS::CrossSectionDescription(std::ostream& outFile) const 95 { 106 { 96 outFile << "G4NeutronInelasticXS calculates 107 outFile << "G4NeutronInelasticXS calculates the neutron inelastic scattering\n" 97 << "cross section on nuclei using da 108 << "cross section on nuclei using data from the high precision\n" 98 << "neutron database. These data ar 109 << "neutron database. These data are simplified and smoothed over\n" 99 << "the resonance region in order to 110 << "the resonance region in order to reduce CPU time.\n" 100 << "For high energy Glauber-Gribov c << 111 << "G4NeutronInelasticXS is valid for energies up to 20 MeV, for\n" >> 112 << "nuclei through U.\n"; 101 } 113 } 102 114 103 G4bool 115 G4bool 104 G4NeutronInelasticXS::IsElementApplicable(cons 116 G4NeutronInelasticXS::IsElementApplicable(const G4DynamicParticle*, 105 G4in << 117 G4int, const G4Material*) 106 { 118 { 107 return true; 119 return true; 108 } 120 } 109 121 110 G4bool 122 G4bool 111 G4NeutronInelasticXS::IsIsoApplicable(const G4 123 G4NeutronInelasticXS::IsIsoApplicable(const G4DynamicParticle*, 112 G4int, G << 124 G4int /*ZZ*/, G4int /*AA*/, 113 const G4 << 125 const G4Element*, const G4Material*) 114 { 126 { 115 return true; 127 return true; 116 } 128 } 117 129 118 G4double 130 G4double 119 G4NeutronInelasticXS::GetElementCrossSection(c 131 G4NeutronInelasticXS::GetElementCrossSection(const G4DynamicParticle* aParticle, 120 G << 132 G4int Z, const G4Material*) 121 { 133 { 122 return ElementCrossSection(aParticle->GetKin << 134 G4double xs = 0.0; 123 aParticle->GetLog << 135 G4double ekin = aParticle->GetKineticEnergy(); 124 } << 125 136 126 G4double << 137 if(Z < 1 || Z >= MAXZINEL) { return xs; } 127 G4NeutronInelasticXS::ComputeCrossSectionPerEl << 138 G4int Amean = G4lrint(G4NistManager::Instance()->GetAtomicMassAmu(Z)); 128 << 129 << 130 << 131 { << 132 return ElementCrossSection(ekin, loge, elm-> << 133 } << 134 139 135 G4double << 140 G4PhysicsVector* pv = data.GetElementData(Z); 136 G4NeutronInelasticXS::ElementCrossSection(G4do << 141 // G4cout << "G4NeutronInelasticXS::GetCrossSection e= " << ekin << " Z= " 137 { << 142 // << Z << G4endl; 138 G4int Z = std::min(ZZ, MAXZINEL-1); << 139 G4double ekin = eKin; << 140 G4double loge = logE; << 141 G4double xs; << 142 143 143 // very low energy limit << 144 // element was not initialised 144 if (ekin < lowElimit) { << 145 if(!pv) { 145 ekin = lowElimit; << 146 Initialise(Z); 146 loge = loglowElimit; << 147 pv = data.GetElementData(Z); >> 148 if(!pv) { return xs; } 147 } 149 } 148 // pv should exist << 149 auto pv = GetPhysicsVector(Z); << 150 150 151 const G4double e0 = pv->Energy(0); << 151 G4double e1 = pv->Energy(0); 152 if (ekin <= e0) { << 152 if(ekin <= e1) { return xs; } 153 xs = (*pv)[0]; << 153 154 if (xs > 0.0) { xs *= std::sqrt(e0/ekin); << 154 G4double e2 = pv->GetMaxEnergy(); 155 } else if (ekin <= pv->GetMaxEnergy()) { << 155 156 xs = pv->LogVectorValue(ekin, loge); << 156 if(ekin <= e2) { 157 } else { << 157 xs = pv->Value(ekin); 158 xs = coeff[Z]*ggXsection->GetInelasticElem << 158 } else if(1 == Z) { 159 << 159 fNucleon->GetHadronNucleonXscPDG(aParticle, proton); >> 160 xs = coeff[1]*fNucleon->GetInelasticHadronNucleonXsc(); >> 161 } else { >> 162 ggXsection->GetIsoCrossSection(aParticle, Z, Amean); >> 163 xs = coeff[Z]*ggXsection->GetInelasticGlauberGribovXsc(); 160 } 164 } 161 165 162 #ifdef G4VERBOSE << 166 if(verboseLevel > 0) { 163 if(verboseLevel > 1) { << 167 G4cout << "ekin= " << ekin << ", XSinel= " << xs << G4endl; 164 G4cout << "G4NeutronInelasticXS::ElementC << 165 << " Ekin(MeV)= " << ekin/CLHEP::M << 166 << ", ElmXSinel(b)= " << xs/CLHEP: << 167 << G4endl; << 168 } 168 } 169 #endif << 170 return xs; 169 return xs; 171 } 170 } 172 171 173 G4double << 172 G4double 174 G4NeutronInelasticXS::ComputeIsoCrossSection(G << 173 G4NeutronInelasticXS::GetIsoCrossSection(const G4DynamicParticle* aParticle, 175 c << 174 G4int Z, G4int A, 176 G << 175 const G4Isotope*, const G4Element*, 177 c << 176 const G4Material*) 178 c << 177 { 179 { << 178 G4double xs = 0.0; 180 return IsoCrossSection(ekin, loge, Z, A); << 179 G4double ekin = aParticle->GetKineticEnergy(); >> 180 if(Z > 0 && Z < MAXZINEL) { xs = IsoCrossSection(ekin, Z, A); } >> 181 return xs; 181 } 182 } 182 183 183 G4double << 184 G4double 184 G4NeutronInelasticXS::GetIsoCrossSection(const << 185 G4NeutronInelasticXS::IsoCrossSection(G4double ekin, G4int Z, G4int A) 185 G4int << 186 { 186 const << 187 G4double xs = 0.0; 187 const << 188 188 { << 189 G4PhysicsVector* pv = data.GetElementData(Z); 189 return IsoCrossSection(aParticle->GetKinetic << 190 190 aParticle->GetLogKine << 191 // element was not initialised 191 } << 192 if(!pv) { 192 << 193 Initialise(Z); 193 G4double << 194 pv = data.GetElementData(Z); 194 G4NeutronInelasticXS::IsoCrossSection(G4double << 195 if(!pv) { return xs; } 195 G4int ZZ << 196 { << 197 G4double xs; << 198 G4int Z = std::min(ZZ, MAXZINEL-1); << 199 G4double ekin = eKin; << 200 G4double loge = logE; << 201 << 202 /* << 203 G4cout << "G4NeutronInelasticXS::IsoCrossSec << 204 << Z << " A= " << A << G4endl; << 205 G4cout << " Amin= " << amin[Z] << " Amax= " << 206 << " E(MeV)= " << ekin << " Ncomp=" << 207 << data->GetNumberOfComponents(Z) << << 208 */ << 209 GetPhysicsVector(Z); << 210 << 211 // use isotope cross section if applicable << 212 if (ekin <= elimit && data->GetNumberOfCompo << 213 auto pviso = data->GetComponentDataByID(Z, << 214 if (nullptr != pviso) { << 215 const G4double e0 = pviso->Energy(0); << 216 if (ekin > e0) { << 217 xs = pviso->LogVectorValue(ekin, loge) << 218 } else { << 219 xs = (*pviso)[0]; << 220 if (xs > 0.0) { xs *= std::sqrt(e0/eki << 221 } << 222 #ifdef G4VERBOSE << 223 if(verboseLevel > 1) { << 224 G4cout << "G4NeutronInelasticXS::IsoXS << 225 << ekin/CLHEP::MeV << 226 << " xs(b)= " << xs/CLHEP::bar << 227 << " Z= " << Z << " A= " << A << 228 } << 229 #endif << 230 return xs; << 231 } << 232 } 196 } >> 197 G4PhysicsVector* pviso = data.GetComponentDataByID(Z, A); >> 198 if(pviso) { pv = pviso; } 233 199 234 // use element x-section << 200 xs = pv->Value(ekin); 235 xs = ElementCrossSection(ekin, loge, Z)*A/ae << 236 201 237 #ifdef G4VERBOSE << 202 if(verboseLevel > 0){ 238 if(verboseLevel > 1) { << 203 G4cout << "ekin= " << ekin << ", xs= " << xs << G4endl; 239 G4cout << "G4NeutronInelasticXS::IsoXS: Z << 240 << " Ekin(MeV)= " << ekin/CLHEP::M << 241 << ", ElmXS(b)= " << xs/CLHEP::bar << 242 } 204 } 243 #endif << 244 return xs; 205 return xs; 245 } 206 } 246 207 247 const G4Isotope* G4NeutronInelasticXS::SelectI << 208 G4Isotope* G4NeutronInelasticXS::SelectIsotope(const G4Element* anElement, 248 const G4Element* anElement, G4double kin << 209 G4double kinEnergy) 249 { 210 { 250 std::size_t nIso = anElement->GetNumberOfIso << 211 G4int nIso = anElement->GetNumberOfIsotopes(); 251 const G4Isotope* iso = anElement->GetIsotope << 212 G4IsotopeVector* isoVector = anElement->GetIsotopeVector(); 252 if(1 == nIso) { return iso; } << 213 G4Isotope* iso = (*isoVector)[0]; 253 214 254 // more than 1 isotope 215 // more than 1 isotope 255 G4int Z = anElement->GetZasInt(); << 216 if(1 < nIso) { 256 if (nullptr == data->GetElementData(Z)) { In << 217 G4int Z = G4lrint(anElement->GetZ()); 257 << 218 if(Z >= MAXZINEL) { Z = MAXZINEL - 1; } 258 const G4double* abundVector = anElement->Get << 219 G4double* abundVector = anElement->GetRelativeAbundanceVector(); 259 G4double q = G4UniformRand(); << 220 G4double q = G4UniformRand(); 260 G4double sum = 0.0; << 221 G4double sum = 0.0; 261 std::size_t j; << 222 262 << 223 // is there isotope wise cross section? 263 // isotope wise cross section not available << 224 if(0 == amin[Z]) { 264 if (Z >= MAXZINEL || 0 == data->GetNumberOfC << 225 for (G4int j = 0; j<nIso; ++j) { 265 for (j=0; j<nIso; ++j) { << 226 sum += abundVector[j]; 266 sum += abundVector[j]; << 227 if(q <= sum) { 267 if(q <= sum) { << 228 iso = (*isoVector)[j]; 268 iso = anElement->GetIsotope((G4int)j); << 229 break; 269 break; << 230 } >> 231 } >> 232 } else { >> 233 size_t nmax = data.GetNumberOfComponents(Z); >> 234 if(temp.size() < nmax) { temp.resize(nmax,0.0); } >> 235 for (size_t i=0; i<nmax; ++i) { >> 236 G4int A = (*isoVector)[i]->GetN(); >> 237 sum += abundVector[i]*IsoCrossSection(kinEnergy, Z, A); >> 238 temp[i] = sum; >> 239 } >> 240 sum *= q; >> 241 for (size_t j = 0; j<nmax; ++j) { >> 242 if(temp[j] >= sum) { >> 243 iso = (*isoVector)[j]; >> 244 break; >> 245 } 270 } 246 } 271 } << 272 return iso; << 273 } << 274 << 275 // use isotope cross sections << 276 auto nn = temp.size(); << 277 if(nn < nIso) { temp.resize(nIso, 0.); } << 278 << 279 for (j=0; j<nIso; ++j) { << 280 // G4cout << j << "-th isotope " << anElem << 281 // << " abund= " << abundVector[j] << 282 sum += abundVector[j]*IsoCrossSection(kinE << 283 anEl << 284 temp[j] = sum; << 285 } << 286 sum *= q; << 287 for (j = 0; j<nIso; ++j) { << 288 if (temp[j] >= sum) { << 289 iso = anElement->GetIsotope((G4int)j); << 290 break; << 291 } 247 } 292 } 248 } 293 return iso; 249 return iso; 294 } 250 } 295 251 296 void 252 void 297 G4NeutronInelasticXS::BuildPhysicsTable(const 253 G4NeutronInelasticXS::BuildPhysicsTable(const G4ParticleDefinition& p) 298 { 254 { 299 if (verboseLevel > 0) { << 255 if(isInitialized) { return; } 300 G4cout << "G4NeutronInelasticXS::BuildPhys << 256 if(verboseLevel > 0){ 301 << p.GetParticleName() << G4endl; << 257 G4cout << "G4NeutronCaptureXS::BuildPhysicsTable for " >> 258 << p.GetParticleName() << G4endl; 302 } 259 } 303 if (p.GetParticleName() != "neutron") { << 260 if(p.GetParticleName() != "neutron") { 304 G4ExceptionDescription ed; 261 G4ExceptionDescription ed; 305 ed << p.GetParticleName() << " is a wrong 262 ed << p.GetParticleName() << " is a wrong particle type -" 306 << " only neutron is allowed"; 263 << " only neutron is allowed"; 307 G4Exception("G4NeutronInelasticXS::BuildPh 264 G4Exception("G4NeutronInelasticXS::BuildPhysicsTable(..)","had012", 308 FatalException, ed, ""); << 265 FatalException, ed, ""); 309 return; 266 return; 310 } 267 } 311 // it is possible re-initialisation for the << 268 isInitialized = true; 312 const G4ElementTable* table = G4Element::Get << 313 << 314 // initialise static tables only once << 315 std::call_once(applyOnce, [this]() { isIniti << 316 269 317 if (isInitializer) { << 270 // check environment variable 318 G4AutoLock l(&nInelasticXSMutex); << 271 // Build the complete string identifying the file with the data set 319 << 272 char* path = getenv("G4NEUTRONXSDATA"); 320 // Upload data for elements used in geomet << 273 321 for ( auto const & elm : *table ) { << 274 G4DynamicParticle* dynParticle = 322 G4int Z = std::max( 1, std::min( elm->Ge << 275 new G4DynamicParticle(G4Neutron::Neutron(),G4ThreeVector(1,0,0),1); 323 if ( nullptr == data->GetElementData(Z) << 276 >> 277 // Access to elements >> 278 const G4ElementTable* theElmTable = G4Element::GetElementTable(); >> 279 size_t numOfElm = G4Element::GetNumberOfElements(); >> 280 if(numOfElm > 0) { >> 281 for(size_t i=0; i<numOfElm; ++i) { >> 282 G4int Z = G4lrint(((*theElmTable)[i])->GetZ()); >> 283 if(Z < 1) { Z = 1; } >> 284 else if(Z >= MAXZINEL) { Z = MAXZINEL-1; } >> 285 //G4cout << "Z= " << Z << G4endl; >> 286 // Initialisation >> 287 if(!data.GetElementData(Z)) { Initialise(Z, dynParticle, path); } 324 } 288 } 325 l.unlock(); << 326 } << 327 // prepare isotope selection << 328 std::size_t nIso = temp.size(); << 329 for ( auto const & elm : *table ) { << 330 std::size_t n = elm->GetNumberOfIsotopes() << 331 if (n > nIso) { nIso = n; } << 332 } 289 } 333 temp.resize(nIso, 0.0); << 290 delete dynParticle; 334 } 291 } 335 292 336 const G4String& G4NeutronInelasticXS::FindDire << 293 void >> 294 G4NeutronInelasticXS::Initialise(G4int Z, G4DynamicParticle* dp, >> 295 const char* p) 337 { 296 { 338 // build the complete string identifying the << 297 if(data.GetElementData(Z)) { return; } 339 if (gDataDirectory.empty()) { << 298 const char* path = p; 340 std::ostringstream ost; << 299 if(!p) { 341 ost << G4HadronicParameters::Instance()->G << 300 // check environment variable 342 gDataDirectory = ost.str(); << 301 // Build the complete string identifying the file with the data set >> 302 path = getenv("G4NEUTRONXSDATA"); >> 303 if (!path) { >> 304 G4Exception("G4NeutronInelasticXS::Initialise(..)","had013", >> 305 FatalException, >> 306 "Environment variable G4NEUTRONXSDATA is not defined"); >> 307 return; >> 308 } >> 309 } >> 310 G4DynamicParticle* dynParticle = dp; >> 311 if(!dp) { >> 312 dynParticle = >> 313 new G4DynamicParticle(G4Neutron::Neutron(),G4ThreeVector(1,0,0),1); 343 } 314 } 344 return gDataDirectory; << 345 } << 346 << 347 void G4NeutronInelasticXS::InitialiseOnFly(G4i << 348 { << 349 G4AutoLock l(&nInelasticXSMutex); << 350 Initialise(Z); << 351 l.unlock(); << 352 } << 353 315 354 void G4NeutronInelasticXS::Initialise(G4int Z) << 316 G4int Amean = G4lrint(G4NistManager::Instance()->GetAtomicMassAmu(Z)); 355 { << 356 if (nullptr != data->GetElementData(Z)) { re << 357 317 358 // upload element data 318 // upload element data 359 std::ostringstream ost; 319 std::ostringstream ost; 360 ost << FindDirectoryPath() << Z; << 320 ost << path << "/inelast" << Z ; 361 G4PhysicsVector* v = RetrieveVector(ost, tru 321 G4PhysicsVector* v = RetrieveVector(ost, true); 362 data->InitialiseForElement(Z, v); << 322 data.InitialiseForElement(Z, v); 363 if (verboseLevel > 1) { << 323 364 G4cout << "G4NeutronInelasticXS::Initiali << 365 << " A= " << aeff[Z] << " Amin= " << 366 << " Amax= " << amax[Z] << G4endl << 367 } << 368 // upload isotope data 324 // upload isotope data 369 G4bool noComp = true; << 325 if(amin[Z] > 0) { 370 if (amin[Z] < amax[Z]) { << 326 size_t n = 0; 371 << 327 size_t i = 0; 372 for (G4int A=amin[Z]; A<=amax[Z]; ++A) { << 328 size_t nmax = (size_t)(amax[Z]-amin[Z]+1); >> 329 if(work.size() < nmax) { work.resize(nmax,0); } >> 330 for(G4int A=amin[Z]; A<=amax[Z]; ++A) { 373 std::ostringstream ost1; 331 std::ostringstream ost1; 374 ost1 << gDataDirectory << Z << "_" << A; << 332 ost1 << path << "/cap" << Z << "_" << A; 375 G4PhysicsVector* v1 = RetrieveVector(ost 333 G4PhysicsVector* v1 = RetrieveVector(ost1, false); 376 if (nullptr != v1) { << 334 if(v1) { ++n; } 377 if (noComp) { << 335 work[i] = v1; 378 G4int nmax = amax[Z] - A + 1; << 336 ++i; 379 data->InitialiseForComponent(Z, nmax << 337 } 380 noComp = false; << 338 data.InitialiseForComponent(Z, n); 381 } << 339 for(size_t j=0; j<i; ++j) { 382 data->AddComponent(Z, A, v1); << 340 if(work[j]) { data.AddComponent(Z, amin[Z]+j, work[j]); } 383 } << 384 } 341 } 385 } 342 } 386 // no components case << 387 if (noComp) { data->InitialiseForComponent(Z << 388 343 389 // smooth transition 344 // smooth transition 390 G4double sig1 = (*v)[v->GetVectorLength()-1] << 345 G4double emax = v->GetMaxEnergy(); 391 G4double ehigh= v->GetMaxEnergy(); << 346 G4double sig1 = (*v)[v->GetVectorLength() - 1]; 392 G4double sig2 = ggXsection->GetInelasticElem << 347 dynParticle->SetKineticEnergy(emax); 393 ehigh, Z, aeff[Z << 348 G4double sig2 = 0.0; 394 coeff[Z] = (sig2 > 0.) ? sig1/sig2 : 1.0; << 349 if(1 == Z) { >> 350 fNucleon->GetHadronNucleonXscPDG(dynParticle, proton); >> 351 sig2 = fNucleon->GetInelasticHadronNucleonXsc(); >> 352 } else { >> 353 ggXsection->GetIsoCrossSection(dynParticle, Z, Amean); >> 354 sig2 = ggXsection->GetInelasticGlauberGribovXsc(); >> 355 } >> 356 if(sig2 > 0.) { coeff[Z] = sig1/sig2; } >> 357 if(!dp) { delete dynParticle; } 395 } 358 } 396 359 397 G4PhysicsVector* 360 G4PhysicsVector* 398 G4NeutronInelasticXS::RetrieveVector(std::ostr 361 G4NeutronInelasticXS::RetrieveVector(std::ostringstream& ost, G4bool warn) 399 { 362 { 400 G4PhysicsLogVector* v = nullptr; << 363 G4PhysicsLogVector* v = 0; 401 std::ifstream filein(ost.str().c_str()); 364 std::ifstream filein(ost.str().c_str()); 402 if (!filein.is_open()) { << 365 if (!(filein)) { 403 if(warn) { << 366 if(!warn) { return v; } 404 G4ExceptionDescription ed; << 367 G4ExceptionDescription ed; 405 ed << "Data file <" << ost.str().c_str() << 368 ed << "Data file <" << ost.str().c_str() 406 << "> is not opened!"; << 369 << "> is not opened!"; 407 G4Exception("G4NeutronInelasticXS::Retri << 370 G4Exception("G4NeutronElasticXS::RetrieveVector(..)","had014", 408 FatalException, ed, "Check G << 371 FatalException, ed, "Check G4NEUTRONXSDATA"); 409 } << 372 }else{ 410 } else { << 411 if(verboseLevel > 1) { 373 if(verboseLevel > 1) { 412 G4cout << "File " << ost.str() 374 G4cout << "File " << ost.str() 413 << " is opened by G4NeutronInelas << 375 << " is opened by G4NeutronCaptureXS" << G4endl; 414 } 376 } 415 // retrieve data from DB 377 // retrieve data from DB 416 v = new G4PhysicsLogVector(); 378 v = new G4PhysicsLogVector(); 417 if(!v->Retrieve(filein, true)) { 379 if(!v->Retrieve(filein, true)) { 418 G4ExceptionDescription ed; 380 G4ExceptionDescription ed; 419 ed << "Data file <" << ost.str().c_str() 381 ed << "Data file <" << ost.str().c_str() 420 << "> is not retrieved!"; << 382 << "> is not retrieved!"; 421 G4Exception("G4NeutronInelasticXS::Retri 383 G4Exception("G4NeutronInelasticXS::RetrieveVector(..)","had015", 422 FatalException, ed, "Check G << 384 FatalException, ed, "Check G4NEUTRONXSDATA"); 423 } 385 } 424 } 386 } 425 return v; 387 return v; 426 } 388 } 427 389