Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 26 27 27 28 #include "G4NeutrinoElectronCcXsc.hh" 28 #include "G4NeutrinoElectronCcXsc.hh" 29 #include "G4PhysicalConstants.hh" 29 #include "G4PhysicalConstants.hh" 30 #include "G4SystemOfUnits.hh" 30 #include "G4SystemOfUnits.hh" 31 #include "G4DynamicParticle.hh" 31 #include "G4DynamicParticle.hh" 32 #include "G4ParticleTable.hh" 32 #include "G4ParticleTable.hh" 33 #include "G4IonTable.hh" 33 #include "G4IonTable.hh" 34 #include "G4HadTmpUtil.hh" 34 #include "G4HadTmpUtil.hh" 35 #include "G4NistManager.hh" 35 #include "G4NistManager.hh" 36 36 37 #include "G4MuonMinus.hh" 37 #include "G4MuonMinus.hh" 38 #include "G4TauMinus.hh" 38 #include "G4TauMinus.hh" 39 39 40 using namespace std; 40 using namespace std; 41 using namespace CLHEP; 41 using namespace CLHEP; 42 42 43 G4NeutrinoElectronCcXsc::G4NeutrinoElectronCcX 43 G4NeutrinoElectronCcXsc::G4NeutrinoElectronCcXsc() 44 : G4VCrossSectionDataSet("NuElectronCcXsc") 44 : G4VCrossSectionDataSet("NuElectronCcXsc") 45 { 45 { 46 // PDG2016: Gf=1.1663787(6)e-5*(hc)^3/GeV^2 46 // PDG2016: Gf=1.1663787(6)e-5*(hc)^3/GeV^2 47 // fCofXsc = Gf*Gf*MeC2*2/pi 47 // fCofXsc = Gf*Gf*MeC2*2/pi 48 48 49 fCofXsc = 1.36044e-22; 49 fCofXsc = 1.36044e-22; 50 fCofXsc *= hbarc*hbarc*electron_mass_c2; 50 fCofXsc *= hbarc*hbarc*electron_mass_c2; 51 fCofXsc /= halfpi; 51 fCofXsc /= halfpi; 52 52 53 // G4cout<<"fCofXsc = "<<fCofXsc*GeV/cm2<<" 53 // G4cout<<"fCofXsc = "<<fCofXsc*GeV/cm2<<" cm2/GeV"<<G4endl; 54 54 55 // G4cout<<"hbarc = "<<hbarc/MeV/fermi<<" Me 55 // G4cout<<"hbarc = "<<hbarc/MeV/fermi<<" MeV*fermi"<<G4endl; 56 56 57 // PDG2016: sin^2 theta Weinberg 57 // PDG2016: sin^2 theta Weinberg 58 58 59 fSin2tW = 0.23129; // 0.2312; 59 fSin2tW = 0.23129; // 0.2312; 60 60 61 fCutEnergy = 0.; // default value 61 fCutEnergy = 0.; // default value 62 62 63 fBiasingFactor = 1.; // default as physics 63 fBiasingFactor = 1.; // default as physics 64 64 65 theMuonMinus = G4MuonMinus::MuonMinus(); 65 theMuonMinus = G4MuonMinus::MuonMinus(); 66 theTauMinus = G4TauMinus::TauMinus(); 66 theTauMinus = G4TauMinus::TauMinus(); 67 } 67 } 68 68 69 G4NeutrinoElectronCcXsc::~G4NeutrinoElectronCc 69 G4NeutrinoElectronCcXsc::~G4NeutrinoElectronCcXsc() 70 {} 70 {} 71 71 72 ////////////////////////////////////////////// 72 ////////////////////////////////////////////////////// 73 73 74 G4bool 74 G4bool 75 G4NeutrinoElectronCcXsc::IsElementApplicable( 75 G4NeutrinoElectronCcXsc::IsElementApplicable( const G4DynamicParticle* aPart, G4int, const G4Material*) 76 { 76 { 77 G4bool result = false; 77 G4bool result = false; 78 G4String pName = aPart->GetDefinition()->Get 78 G4String pName = aPart->GetDefinition()->GetParticleName(); 79 G4double minEnergy = 0., energy = aPart->Get 79 G4double minEnergy = 0., energy = aPart->GetTotalEnergy(); 80 G4double fmass, emass = electron_mass_c2; 80 G4double fmass, emass = electron_mass_c2; 81 81 82 if( pName == "anti_nu_e" || pName == "n << 82 if( pName == "nu_mu" || pName == "anti_nu_mu" ) fmass = theMuonMinus->GetPDGMass(); 83 else if( pName == "nu_tau" || pName == "ant 83 else if( pName == "nu_tau" || pName == "anti_nu_tau" ) fmass = theTauMinus->GetPDGMass(); 84 else fmass = emass; 84 else fmass = emass; 85 85 86 minEnergy = (fmass-emass)*(fmass+emass)/emas 86 minEnergy = (fmass-emass)*(fmass+emass)/emass; 87 87 88 if( ( pName == "nu_mu" || pName == "anti_nu 88 if( ( pName == "nu_mu" || pName == "anti_nu_mu" || 89 pName == "nu_tau" || pName == "anti_nu 89 pName == "nu_tau" || pName == "anti_nu_tau" ) && 90 energy > minEnergy 90 energy > minEnergy ) 91 { 91 { 92 result = true; 92 result = true; 93 } 93 } 94 return result; 94 return result; 95 } 95 } 96 96 97 ////////////////////////////////////////////// 97 //////////////////////////////////////////////////// 98 98 99 G4double G4NeutrinoElectronCcXsc:: 99 G4double G4NeutrinoElectronCcXsc:: 100 GetElementCrossSection(const G4DynamicParticle 100 GetElementCrossSection(const G4DynamicParticle* aPart, G4int ZZ, 101 const G4Material*) 101 const G4Material*) 102 { 102 { 103 G4double result = 0., totS, fmass, fmass2, e 103 G4double result = 0., totS, fmass, fmass2, emass=electron_mass_c2, emass2; 104 104 105 G4double energy = aPart->GetTotalEnergy(); 105 G4double energy = aPart->GetTotalEnergy(); 106 G4String pName = aPart->GetDefinition()->G 106 G4String pName = aPart->GetDefinition()->GetParticleName(); 107 107 108 emass2 = emass*emass; 108 emass2 = emass*emass; 109 totS = 2.*energy*emass + emass2; 109 totS = 2.*energy*emass + emass2; 110 110 111 if( pName == "anti_nu_e" || pName == "nu_mu" << 111 if( pName == "nu_mu") 112 { 112 { 113 fmass = theMuonMinus->GetPDGMass(); 113 fmass = theMuonMinus->GetPDGMass(); 114 fmass2 = fmass*fmass; 114 fmass2 = fmass*fmass; 115 result = (1. - fmass2/totS)*(1. - fmass2/t 115 result = (1. - fmass2/totS)*(1. - fmass2/totS); 116 } 116 } 117 else if( pName == "anti_nu_mu") 117 else if( pName == "anti_nu_mu") 118 { 118 { 119 fmass = theMuonMinus->GetPDGMass(); 119 fmass = theMuonMinus->GetPDGMass(); 120 fmass2 = fmass*fmass; 120 fmass2 = fmass*fmass; 121 121 122 result = (1.+ emass2/totS)*(1.+ fmass2/to 122 result = (1.+ emass2/totS)*(1.+ fmass2/totS); 123 result += (1.- emass2/totS)*(1.- fmass2/to 123 result += (1.- emass2/totS)*(1.- fmass2/totS)/3.; 124 result *= 0.25*(1. - fmass2/totS)*(1. - fm 124 result *= 0.25*(1. - fmass2/totS)*(1. - fmass2/totS); 125 } 125 } 126 else if( pName == "nu_tau") 126 else if( pName == "nu_tau") 127 { 127 { 128 fmass = theTauMinus->GetPDGMass(); 128 fmass = theTauMinus->GetPDGMass(); 129 fmass2 = fmass*fmass; 129 fmass2 = fmass*fmass; 130 result = (1. - fmass2/totS)*(1. - fmass2/t 130 result = (1. - fmass2/totS)*(1. - fmass2/totS); 131 } 131 } 132 else if( pName == "anti_nu_tau") 132 else if( pName == "anti_nu_tau") 133 { 133 { 134 fmass = theTauMinus->GetPDGMass(); 134 fmass = theTauMinus->GetPDGMass(); 135 fmass2 = fmass*fmass; 135 fmass2 = fmass*fmass; 136 136 137 result = (1.+ emass2/totS)*(1.+ fmass2/to 137 result = (1.+ emass2/totS)*(1.+ fmass2/totS); 138 result += (1.- emass2/totS)*(1.- fmass2/to 138 result += (1.- emass2/totS)*(1.- fmass2/totS)/3.; 139 result *= 0.25*(1. - fmass2/totS)*(1. - fm 139 result *= 0.25*(1. - fmass2/totS)*(1. - fmass2/totS); 140 } 140 } 141 else 141 else 142 { 142 { 143 return result; 143 return result; 144 } 144 } 145 // if( energy <= electron_mass_c2 ) return r 145 // if( energy <= electron_mass_c2 ) return result; 146 146 147 G4double aa = 1.; << 148 G4double bb = 1.7; << 149 G4double gw = 2.141*GeV; << 150 G4double dd = 5000.; << 151 G4double mw = 80.385*GeV; << 152 << 153 if( energy > 50.*GeV ) << 154 { << 155 result *= bb; << 156 result /= 1.+ aa*totS/mw/mw; << 157 << 158 if( pName == "anti_nu_e") << 159 { << 160 result *= 1. + dd*gw*gw*totS/( (totS-mw* << 161 } << 162 } << 163 result *= fCofXsc; //*energy; 147 result *= fCofXsc; //*energy; 164 result *= energy + 0.5*emass; 148 result *= energy + 0.5*emass; 165 result *= ZZ; // incoherent sum over all e 149 result *= ZZ; // incoherent sum over all element electrons 166 150 167 result *= fBiasingFactor; // biasing up, if 151 result *= fBiasingFactor; // biasing up, if set >1 168 152 169 return result; 153 return result; 170 } 154 } 171 155 172 156