Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 18-Sep-2003 First version is written by T. 26 // 18-Sep-2003 First version is written by T. Koi 27 // 12-Nov-2003 Add energy check at lower side 27 // 12-Nov-2003 Add energy check at lower side T. Koi 28 // 15-Nov-2006 Above 10GeV/n Cross Section bec 28 // 15-Nov-2006 Above 10GeV/n Cross Section become constant T. Koi (SLAC/SCCS) 29 // 23-Dec-2006 Isotope dependence adde by D. W 29 // 23-Dec-2006 Isotope dependence adde by D. Wright 30 // 14-Mar-2011 Moved constructor, destructor a 30 // 14-Mar-2011 Moved constructor, destructor and virtual methods to source by V.Ivanchenko 31 // 19-Aug-2011 V.Ivanchenko move to new design 31 // 19-Aug-2011 V.Ivanchenko move to new design and make x-section per element 32 // 32 // 33 33 34 #include "G4IonsShenCrossSection.hh" 34 #include "G4IonsShenCrossSection.hh" 35 #include "G4PhysicalConstants.hh" 35 #include "G4PhysicalConstants.hh" 36 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 37 #include "G4DynamicParticle.hh" 37 #include "G4DynamicParticle.hh" 38 #include "G4NucleiProperties.hh" 38 #include "G4NucleiProperties.hh" 39 #include "G4HadTmpUtil.hh" 39 #include "G4HadTmpUtil.hh" 40 #include "G4NistManager.hh" 40 #include "G4NistManager.hh" >> 41 #include "G4Pow.hh" 41 42 42 G4IonsShenCrossSection::G4IonsShenCrossSection 43 G4IonsShenCrossSection::G4IonsShenCrossSection() 43 : G4VCrossSectionDataSet("IonsShen"), 44 : G4VCrossSectionDataSet("IonsShen"), 44 upperLimit( 10*GeV ), << 45 upperLimit( 10*GeV ), lowerLimit( 10*MeV ), r0 ( 1.1 ) 45 // lowerLimit( 10*MeV ), << 46 r0 ( 1.1 ) << 47 {} 46 {} 48 47 49 G4IonsShenCrossSection::~G4IonsShenCrossSectio 48 G4IonsShenCrossSection::~G4IonsShenCrossSection() 50 {} 49 {} 51 50 52 void 51 void 53 G4IonsShenCrossSection::CrossSectionDescriptio 52 G4IonsShenCrossSection::CrossSectionDescription(std::ostream& outFile) const 54 { 53 { 55 outFile << "G4IonsShenCrossSection calculate 54 outFile << "G4IonsShenCrossSection calculates the total reaction cross\n" 56 << "section for nucleus-nucleus scat 55 << "section for nucleus-nucleus scattering using the Shen\n" 57 << "parameterization. It is valid f 56 << "parameterization. It is valid for projectiles and targets of\n" 58 << "all Z, and projectile energies u 57 << "all Z, and projectile energies up to 1 TeV/n. Above 10 GeV/n" 59 << "the cross section is constant. 58 << "the cross section is constant. Below 10 MeV/n zero cross\n" 60 << "is returned.\n"; 59 << "is returned.\n"; 61 } 60 } 62 61 63 G4bool G4IonsShenCrossSection::IsElementApplic 62 G4bool G4IonsShenCrossSection::IsElementApplicable(const G4DynamicParticle* aDP, 64 G4int, const G4Material*) 63 G4int, const G4Material*) 65 { 64 { 66 return (1 <= aDP->GetDefinition()->GetBaryon 65 return (1 <= aDP->GetDefinition()->GetBaryonNumber()); 67 } 66 } 68 67 69 G4double 68 G4double 70 G4IonsShenCrossSection::GetElementCrossSection 69 G4IonsShenCrossSection::GetElementCrossSection(const G4DynamicParticle* aParticle, 71 G4int Z, 70 G4int Z, 72 const G4Material*) 71 const G4Material*) 73 { 72 { 74 G4int A = G4lrint(G4NistManager::Instance()- 73 G4int A = G4lrint(G4NistManager::Instance()->GetAtomicMassAmu(Z)); 75 return GetIsoCrossSection(aParticle, Z, A); 74 return GetIsoCrossSection(aParticle, Z, A); 76 } 75 } 77 76 78 G4double G4IonsShenCrossSection::GetIsoCrossSe 77 G4double G4IonsShenCrossSection::GetIsoCrossSection(const G4DynamicParticle* aParticle, 79 G4int Zt, G4int At, 78 G4int Zt, G4int At, 80 const G4Isotope*, 79 const G4Isotope*, 81 const G4Element*, 80 const G4Element*, 82 const G4Material*) 81 const G4Material*) 83 82 84 { 83 { 85 G4double xsection = 0.0; 84 G4double xsection = 0.0; 86 85 87 G4int Ap = aParticle->GetDefinition()->GetB 86 G4int Ap = aParticle->GetDefinition()->GetBaryonNumber(); 88 G4int Zp = G4lrint(aParticle->GetDefinition 87 G4int Zp = G4lrint(aParticle->GetDefinition()->GetPDGCharge()/eplus); 89 G4double ke_per_N = aParticle->GetKineticEn 88 G4double ke_per_N = aParticle->GetKineticEnergy() / Ap; 90 if ( ke_per_N > upperLimit ) { ke_per_N = u 89 if ( ke_per_N > upperLimit ) { ke_per_N = upperLimit; } 91 90 92 // Apply energy check, if less than lower l 91 // Apply energy check, if less than lower limit then 0 value is returned 93 //if ( ke_per_N < lowerLimit ) { return xs 92 //if ( ke_per_N < lowerLimit ) { return xsection; } 94 93 95 G4Pow* g4pow = G4Pow::GetInstance(); 94 G4Pow* g4pow = G4Pow::GetInstance(); 96 95 97 G4double cubicrAt = g4pow->Z13(At); 96 G4double cubicrAt = g4pow->Z13(At); 98 G4double cubicrAp = g4pow->Z13(Ap); 97 G4double cubicrAp = g4pow->Z13(Ap); 99 98 100 G4double Rt = 1.12 * cubicrAt - 0.94 * ( 1. 99 G4double Rt = 1.12 * cubicrAt - 0.94 * ( 1.0 / cubicrAt ); 101 G4double Rp = 1.12 * cubicrAp - 0.94 * ( 1. 100 G4double Rp = 1.12 * cubicrAp - 0.94 * ( 1.0 / cubicrAp ); 102 101 103 G4double r = Rt + Rp + 3.2; // in fm 102 G4double r = Rt + Rp + 3.2; // in fm 104 G4double b = 1.0; // in MeV/fm 103 G4double b = 1.0; // in MeV/fm 105 G4double targ_mass = G4NucleiProperties::Ge 104 G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt); 106 105 107 G4double proj_mass = aParticle->GetMass(); 106 G4double proj_mass = aParticle->GetMass(); 108 G4double proj_momentum = aParticle->GetMome 107 G4double proj_momentum = aParticle->GetMomentum().mag(); 109 108 110 G4double Ecm = calEcmValue (proj_mass, targ 109 G4double Ecm = calEcmValue (proj_mass, targ_mass, proj_momentum); 111 110 112 G4double B = 1.44 * Zt * Zp / r - b * Rt * 111 G4double B = 1.44 * Zt * Zp / r - b * Rt * Rp / ( Rt + Rp ); 113 if(Ecm <= B) { return xsection; } 112 if(Ecm <= B) { return xsection; } 114 113 115 G4double c = calCeValue ( ke_per_N / MeV ) 114 G4double c = calCeValue ( ke_per_N / MeV ); 116 115 117 G4double R1 = r0 * (cubicrAt + cubicrAp + 1 116 G4double R1 = r0 * (cubicrAt + cubicrAp + 1.85*cubicrAt*cubicrAp/(cubicrAt + cubicrAp) - c); 118 117 119 G4double R2 = 1.0 * ( At - 2 * Zt ) * Zp / 118 G4double R2 = 1.0 * ( At - 2 * Zt ) * Zp / ( Ap * At ); 120 119 121 120 122 G4double R3 = (0.176 / g4pow->A13(Ecm)) * c 121 G4double R3 = (0.176 / g4pow->A13(Ecm)) * cubicrAt * cubicrAp /(cubicrAt + cubicrAp); 123 122 124 G4double R = R1 + R2 + R3; 123 G4double R = R1 + R2 + R3; 125 124 126 xsection = 10 * pi * R * R * ( 1 - B / Ecm 125 xsection = 10 * pi * R * R * ( 1 - B / Ecm ); 127 xsection = xsection * millibarn; // mulit 126 xsection = xsection * millibarn; // mulitply xsection by millibarn 128 127 129 return xsection; 128 return xsection; 130 } 129 } 131 130 132 G4double 131 G4double 133 G4IonsShenCrossSection::calEcmValue(const G4do 132 G4IonsShenCrossSection::calEcmValue(const G4double mp, const G4double mt, 134 const G4do 133 const G4double Plab) 135 { 134 { 136 G4double Elab = std::sqrt ( mp * mp + Plab 135 G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); 137 G4double Ecm = std::sqrt ( mp * mp + mt * m 136 G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); 138 G4double Pcm = Plab * mt / Ecm; 137 G4double Pcm = Plab * mt / Ecm; 139 G4double KEcm = std::sqrt ( Pcm * Pcm + mp 138 G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; 140 return KEcm; 139 return KEcm; 141 } 140 } 142 141 143 142 144 G4double G4IonsShenCrossSection::calCeValue(co 143 G4double G4IonsShenCrossSection::calCeValue(const G4double ke) 145 { 144 { 146 // Calculate c value 145 // Calculate c value 147 // This value is indepenent from projectile 146 // This value is indepenent from projectile and target particle 148 // ke is projectile kinetic energy per nucle 147 // ke is projectile kinetic energy per nucleon in the Lab system 149 // with MeV unit 148 // with MeV unit 150 // fitting function is made by T. Koi 149 // fitting function is made by T. Koi 151 // There are no data below 30 MeV/n in Kox e 150 // There are no data below 30 MeV/n in Kox et al., 152 151 153 G4double Ce; 152 G4double Ce; 154 G4double log10_ke = std::log10 ( ke ); 153 G4double log10_ke = std::log10 ( ke ); 155 if (log10_ke > 1.5) 154 if (log10_ke > 1.5) 156 { 155 { 157 Ce = -10.0/std::pow(G4double(log10_ke), G 156 Ce = -10.0/std::pow(G4double(log10_ke), G4double(5)) + 2.0; 158 } 157 } 159 else 158 else 160 { 159 { 161 Ce = (-10.0/std::pow(G4double(1.5), G4dou 160 Ce = (-10.0/std::pow(G4double(1.5), G4double(5) ) + 2.0) / 162 std::pow(G4double(1.5) , G4double(3)) 161 std::pow(G4double(1.5) , G4double(3)) * std::pow(G4double(log10_ke), G4double(3)); 163 } 162 } 164 return Ce; 163 return Ce; 165 } 164 } 166 165 167 166