Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 18-Sep-2003 First version is written by T. 26 // 18-Sep-2003 First version is written by T. Koi 27 // 12-Nov-2003 Add energy check at lower side 27 // 12-Nov-2003 Add energy check at lower side T. Koi 28 // 15-Nov-2006 Above 10GeV/n Cross Section bec 28 // 15-Nov-2006 Above 10GeV/n Cross Section become constant T. Koi (SLAC/SCCS) 29 // 23-Dec-2006 Isotope dependence adde by D. W 29 // 23-Dec-2006 Isotope dependence adde by D. Wright 30 // 14-Mar-2011 Moved constructor, destructor a << 31 // 19-Aug-2011 V.Ivanchenko move to new design << 32 // 30 // 33 31 34 #include "G4IonsShenCrossSection.hh" 32 #include "G4IonsShenCrossSection.hh" 35 #include "G4PhysicalConstants.hh" << 33 #include "G4ParticleTable.hh" 36 #include "G4SystemOfUnits.hh" << 34 #include "G4IonTable.hh" 37 #include "G4DynamicParticle.hh" << 38 #include "G4NucleiProperties.hh" << 39 #include "G4HadTmpUtil.hh" 35 #include "G4HadTmpUtil.hh" 40 #include "G4NistManager.hh" << 41 36 42 G4IonsShenCrossSection::G4IonsShenCrossSection << 43 : G4VCrossSectionDataSet("IonsShen"), << 44 upperLimit( 10*GeV ), << 45 // lowerLimit( 10*MeV ), << 46 r0 ( 1.1 ) << 47 {} << 48 << 49 G4IonsShenCrossSection::~G4IonsShenCrossSectio << 50 {} << 51 << 52 void << 53 G4IonsShenCrossSection::CrossSectionDescriptio << 54 { << 55 outFile << "G4IonsShenCrossSection calculate << 56 << "section for nucleus-nucleus scat << 57 << "parameterization. It is valid f << 58 << "all Z, and projectile energies u << 59 << "the cross section is constant. << 60 << "is returned.\n"; << 61 } << 62 << 63 G4bool G4IonsShenCrossSection::IsElementApplic << 64 G4int, const G4Material*) << 65 { << 66 return (1 <= aDP->GetDefinition()->GetBaryon << 67 } << 68 << 69 G4double << 70 G4IonsShenCrossSection::GetElementCrossSection << 71 G4int Z, << 72 const G4Material*) << 73 { << 74 G4int A = G4lrint(G4NistManager::Instance()- << 75 return GetIsoCrossSection(aParticle, Z, A); << 76 } << 77 << 78 G4double G4IonsShenCrossSection::GetIsoCrossSe << 79 G4int Zt, G4int At, << 80 const G4Isotope*, << 81 const G4Element*, << 82 const G4Material*) << 83 37 >> 38 G4double G4IonsShenCrossSection:: >> 39 GetZandACrossSection(const G4DynamicParticle* aParticle, G4int ZZ, >> 40 G4int AA, G4double /*temperature*/) 84 { 41 { 85 G4double xsection = 0.0; 42 G4double xsection = 0.0; 86 43 87 G4int Ap = aParticle->GetDefinition()->GetB 44 G4int Ap = aParticle->GetDefinition()->GetBaryonNumber(); 88 G4int Zp = G4lrint(aParticle->GetDefinition << 45 G4int Zp = G4int(aParticle->GetDefinition()->GetPDGCharge()/eplus + 0.5 ); 89 G4double ke_per_N = aParticle->GetKineticEn 46 G4double ke_per_N = aParticle->GetKineticEnergy() / Ap; 90 if ( ke_per_N > upperLimit ) { ke_per_N = u << 47 if ( ke_per_N > 10*GeV ) ke_per_N = 10*GeV; 91 48 92 // Apply energy check, if less than lower l << 49 // Apply energy check, if less than lower limit then 0 value is returned 93 //if ( ke_per_N < lowerLimit ) { return xs << 50 // if ( ke_per_N < lowerLimit ) return xsection; 94 51 95 G4Pow* g4pow = G4Pow::GetInstance(); << 52 G4int At = AA; 96 << 53 G4int Zt = ZZ; 97 G4double cubicrAt = g4pow->Z13(At); << 98 G4double cubicrAp = g4pow->Z13(Ap); << 99 54 >> 55 G4double one_third = 1.0 / 3.0; >> 56 >> 57 G4double cubicrAt = std::pow ( G4double(At) , G4double(one_third) ); >> 58 G4double cubicrAp = std::pow ( G4double(Ap) , G4double(one_third) ); >> 59 100 G4double Rt = 1.12 * cubicrAt - 0.94 * ( 1. 60 G4double Rt = 1.12 * cubicrAt - 0.94 * ( 1.0 / cubicrAt ); 101 G4double Rp = 1.12 * cubicrAp - 0.94 * ( 1. 61 G4double Rp = 1.12 * cubicrAp - 0.94 * ( 1.0 / cubicrAp ); 102 62 103 G4double r = Rt + Rp + 3.2; // in fm 63 G4double r = Rt + Rp + 3.2; // in fm 104 G4double b = 1.0; // in MeV/fm 64 G4double b = 1.0; // in MeV/fm 105 G4double targ_mass = G4NucleiProperties::Ge << 65 G4double targ_mass = 106 << 66 G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Zt, At); 107 G4double proj_mass = aParticle->GetMass(); 67 G4double proj_mass = aParticle->GetMass(); 108 G4double proj_momentum = aParticle->GetMome 68 G4double proj_momentum = aParticle->GetMomentum().mag(); 109 69 110 G4double Ecm = calEcmValue (proj_mass, targ 70 G4double Ecm = calEcmValue (proj_mass, targ_mass, proj_momentum); 111 71 112 G4double B = 1.44 * Zt * Zp / r - b * Rt * 72 G4double B = 1.44 * Zt * Zp / r - b * Rt * Rp / ( Rt + Rp ); 113 if(Ecm <= B) { return xsection; } << 73 if(Ecm <= B) return xsection; >> 74 //G4double ke_per_N = aParticle->GetKineticEnergy() / Ap; 114 75 115 G4double c = calCeValue ( ke_per_N / MeV ) 76 G4double c = calCeValue ( ke_per_N / MeV ); 116 77 117 G4double R1 = r0 * (cubicrAt + cubicrAp + 1 78 G4double R1 = r0 * (cubicrAt + cubicrAp + 1.85*cubicrAt*cubicrAp/(cubicrAt + cubicrAp) - c); 118 79 119 G4double R2 = 1.0 * ( At - 2 * Zt ) * Zp / 80 G4double R2 = 1.0 * ( At - 2 * Zt ) * Zp / ( Ap * At ); 120 81 121 82 122 G4double R3 = (0.176 / g4pow->A13(Ecm)) * c << 83 G4double R3 = 0.176 / std::pow(G4double(Ecm), G4double(one_third)) * cubicrAt * cubicrAp /(cubicrAt + cubicrAp); 123 84 124 G4double R = R1 + R2 + R3; 85 G4double R = R1 + R2 + R3; 125 86 126 xsection = 10 * pi * R * R * ( 1 - B / Ecm 87 xsection = 10 * pi * R * R * ( 1 - B / Ecm ); 127 xsection = xsection * millibarn; // mulit 88 xsection = xsection * millibarn; // mulitply xsection by millibarn 128 89 129 return xsection; 90 return xsection; 130 } 91 } 131 92 >> 93 >> 94 G4double G4IonsShenCrossSection:: >> 95 GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement, >> 96 G4double temperature) >> 97 { >> 98 G4int nIso = anElement->GetNumberOfIsotopes(); >> 99 G4double xsection = 0; >> 100 >> 101 if (nIso) { >> 102 G4double sig; >> 103 G4IsotopeVector* isoVector = anElement->GetIsotopeVector(); >> 104 G4double* abundVector = anElement->GetRelativeAbundanceVector(); >> 105 G4int ZZ; >> 106 G4int AA; >> 107 >> 108 for (G4int i = 0; i < nIso; i++) { >> 109 ZZ = (*isoVector)[i]->GetZ(); >> 110 AA = (*isoVector)[i]->GetN(); >> 111 sig = GetZandACrossSection(aParticle, ZZ, AA, temperature); >> 112 xsection += sig*abundVector[i]; >> 113 } >> 114 >> 115 } else { >> 116 G4int ZZ = G4lrint(anElement->GetZ()); >> 117 G4int AA = G4lrint(anElement->GetN()); >> 118 xsection = GetZandACrossSection(aParticle, ZZ, AA, temperature); >> 119 } >> 120 >> 121 return xsection; >> 122 } >> 123 >> 124 132 G4double 125 G4double 133 G4IonsShenCrossSection::calEcmValue(const G4do 126 G4IonsShenCrossSection::calEcmValue(const G4double mp, const G4double mt, 134 const G4do 127 const G4double Plab) 135 { 128 { 136 G4double Elab = std::sqrt ( mp * mp + Plab 129 G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); 137 G4double Ecm = std::sqrt ( mp * mp + mt * m 130 G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); 138 G4double Pcm = Plab * mt / Ecm; 131 G4double Pcm = Plab * mt / Ecm; 139 G4double KEcm = std::sqrt ( Pcm * Pcm + mp 132 G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; 140 return KEcm; 133 return KEcm; 141 } 134 } 142 135 143 136 144 G4double G4IonsShenCrossSection::calCeValue(co 137 G4double G4IonsShenCrossSection::calCeValue(const G4double ke) 145 { 138 { 146 // Calculate c value 139 // Calculate c value 147 // This value is indepenent from projectile 140 // This value is indepenent from projectile and target particle 148 // ke is projectile kinetic energy per nucle 141 // ke is projectile kinetic energy per nucleon in the Lab system 149 // with MeV unit 142 // with MeV unit 150 // fitting function is made by T. Koi 143 // fitting function is made by T. Koi 151 // There are no data below 30 MeV/n in Kox e 144 // There are no data below 30 MeV/n in Kox et al., 152 145 153 G4double Ce; 146 G4double Ce; 154 G4double log10_ke = std::log10 ( ke ); 147 G4double log10_ke = std::log10 ( ke ); 155 if (log10_ke > 1.5) 148 if (log10_ke > 1.5) 156 { 149 { 157 Ce = -10.0/std::pow(G4double(log10_ke), G 150 Ce = -10.0/std::pow(G4double(log10_ke), G4double(5)) + 2.0; 158 } 151 } 159 else 152 else 160 { 153 { 161 Ce = (-10.0/std::pow(G4double(1.5), G4dou 154 Ce = (-10.0/std::pow(G4double(1.5), G4double(5) ) + 2.0) / 162 std::pow(G4double(1.5) , G4double(3)) 155 std::pow(G4double(1.5) , G4double(3)) * std::pow(G4double(log10_ke), G4double(3)); 163 } 156 } 164 return Ce; 157 return Ce; 165 } 158 } 166 << 167 159