Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 18-Sep-2003 First version is written by T. 26 // 18-Sep-2003 First version is written by T. Koi 27 // 12-Nov-2003 Add energy check at lower side 27 // 12-Nov-2003 Add energy check at lower side T. Koi 28 // 15-Nov-2006 Above 10GeV/n Cross Section bec 28 // 15-Nov-2006 Above 10GeV/n Cross Section become constant T. Koi (SLAC/SCCS) 29 // 23-Dec-2006 Isotope dependence adde by D. W 29 // 23-Dec-2006 Isotope dependence adde by D. Wright 30 // 14-Mar-2011 Moved constructor, destructor a 30 // 14-Mar-2011 Moved constructor, destructor and virtual methods to source by V.Ivanchenko 31 // 19-Aug-2011 V.Ivanchenko move to new design 31 // 19-Aug-2011 V.Ivanchenko move to new design and make x-section per element 32 // 32 // 33 33 34 #include "G4IonsShenCrossSection.hh" 34 #include "G4IonsShenCrossSection.hh" 35 #include "G4PhysicalConstants.hh" 35 #include "G4PhysicalConstants.hh" 36 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 37 #include "G4DynamicParticle.hh" 37 #include "G4DynamicParticle.hh" 38 #include "G4NucleiProperties.hh" 38 #include "G4NucleiProperties.hh" 39 #include "G4HadTmpUtil.hh" 39 #include "G4HadTmpUtil.hh" 40 #include "G4NistManager.hh" 40 #include "G4NistManager.hh" 41 41 42 G4IonsShenCrossSection::G4IonsShenCrossSection 42 G4IonsShenCrossSection::G4IonsShenCrossSection() 43 : G4VCrossSectionDataSet("IonsShen"), 43 : G4VCrossSectionDataSet("IonsShen"), 44 upperLimit( 10*GeV ), 44 upperLimit( 10*GeV ), 45 // lowerLimit( 10*MeV ), 45 // lowerLimit( 10*MeV ), 46 r0 ( 1.1 ) 46 r0 ( 1.1 ) 47 {} 47 {} 48 48 49 G4IonsShenCrossSection::~G4IonsShenCrossSectio 49 G4IonsShenCrossSection::~G4IonsShenCrossSection() 50 {} 50 {} 51 51 52 void 52 void 53 G4IonsShenCrossSection::CrossSectionDescriptio 53 G4IonsShenCrossSection::CrossSectionDescription(std::ostream& outFile) const 54 { 54 { 55 outFile << "G4IonsShenCrossSection calculate 55 outFile << "G4IonsShenCrossSection calculates the total reaction cross\n" 56 << "section for nucleus-nucleus scat 56 << "section for nucleus-nucleus scattering using the Shen\n" 57 << "parameterization. It is valid f 57 << "parameterization. It is valid for projectiles and targets of\n" 58 << "all Z, and projectile energies u 58 << "all Z, and projectile energies up to 1 TeV/n. Above 10 GeV/n" 59 << "the cross section is constant. 59 << "the cross section is constant. Below 10 MeV/n zero cross\n" 60 << "is returned.\n"; 60 << "is returned.\n"; 61 } 61 } 62 62 63 G4bool G4IonsShenCrossSection::IsElementApplic 63 G4bool G4IonsShenCrossSection::IsElementApplicable(const G4DynamicParticle* aDP, 64 G4int, const G4Material*) 64 G4int, const G4Material*) 65 { 65 { 66 return (1 <= aDP->GetDefinition()->GetBaryon 66 return (1 <= aDP->GetDefinition()->GetBaryonNumber()); 67 } 67 } 68 68 69 G4double 69 G4double 70 G4IonsShenCrossSection::GetElementCrossSection 70 G4IonsShenCrossSection::GetElementCrossSection(const G4DynamicParticle* aParticle, 71 G4int Z, 71 G4int Z, 72 const G4Material*) 72 const G4Material*) 73 { 73 { 74 G4int A = G4lrint(G4NistManager::Instance()- 74 G4int A = G4lrint(G4NistManager::Instance()->GetAtomicMassAmu(Z)); 75 return GetIsoCrossSection(aParticle, Z, A); 75 return GetIsoCrossSection(aParticle, Z, A); 76 } 76 } 77 77 78 G4double G4IonsShenCrossSection::GetIsoCrossSe 78 G4double G4IonsShenCrossSection::GetIsoCrossSection(const G4DynamicParticle* aParticle, 79 G4int Zt, G4int At, 79 G4int Zt, G4int At, 80 const G4Isotope*, 80 const G4Isotope*, 81 const G4Element*, 81 const G4Element*, 82 const G4Material*) 82 const G4Material*) 83 83 84 { 84 { 85 G4double xsection = 0.0; 85 G4double xsection = 0.0; 86 86 87 G4int Ap = aParticle->GetDefinition()->GetB 87 G4int Ap = aParticle->GetDefinition()->GetBaryonNumber(); 88 G4int Zp = G4lrint(aParticle->GetDefinition 88 G4int Zp = G4lrint(aParticle->GetDefinition()->GetPDGCharge()/eplus); 89 G4double ke_per_N = aParticle->GetKineticEn 89 G4double ke_per_N = aParticle->GetKineticEnergy() / Ap; 90 if ( ke_per_N > upperLimit ) { ke_per_N = u 90 if ( ke_per_N > upperLimit ) { ke_per_N = upperLimit; } 91 91 92 // Apply energy check, if less than lower l 92 // Apply energy check, if less than lower limit then 0 value is returned 93 //if ( ke_per_N < lowerLimit ) { return xs 93 //if ( ke_per_N < lowerLimit ) { return xsection; } 94 94 95 G4Pow* g4pow = G4Pow::GetInstance(); 95 G4Pow* g4pow = G4Pow::GetInstance(); 96 96 97 G4double cubicrAt = g4pow->Z13(At); 97 G4double cubicrAt = g4pow->Z13(At); 98 G4double cubicrAp = g4pow->Z13(Ap); 98 G4double cubicrAp = g4pow->Z13(Ap); 99 99 100 G4double Rt = 1.12 * cubicrAt - 0.94 * ( 1. 100 G4double Rt = 1.12 * cubicrAt - 0.94 * ( 1.0 / cubicrAt ); 101 G4double Rp = 1.12 * cubicrAp - 0.94 * ( 1. 101 G4double Rp = 1.12 * cubicrAp - 0.94 * ( 1.0 / cubicrAp ); 102 102 103 G4double r = Rt + Rp + 3.2; // in fm 103 G4double r = Rt + Rp + 3.2; // in fm 104 G4double b = 1.0; // in MeV/fm 104 G4double b = 1.0; // in MeV/fm 105 G4double targ_mass = G4NucleiProperties::Ge 105 G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt); 106 106 107 G4double proj_mass = aParticle->GetMass(); 107 G4double proj_mass = aParticle->GetMass(); 108 G4double proj_momentum = aParticle->GetMome 108 G4double proj_momentum = aParticle->GetMomentum().mag(); 109 109 110 G4double Ecm = calEcmValue (proj_mass, targ 110 G4double Ecm = calEcmValue (proj_mass, targ_mass, proj_momentum); 111 111 112 G4double B = 1.44 * Zt * Zp / r - b * Rt * 112 G4double B = 1.44 * Zt * Zp / r - b * Rt * Rp / ( Rt + Rp ); 113 if(Ecm <= B) { return xsection; } 113 if(Ecm <= B) { return xsection; } 114 114 115 G4double c = calCeValue ( ke_per_N / MeV ) 115 G4double c = calCeValue ( ke_per_N / MeV ); 116 116 117 G4double R1 = r0 * (cubicrAt + cubicrAp + 1 117 G4double R1 = r0 * (cubicrAt + cubicrAp + 1.85*cubicrAt*cubicrAp/(cubicrAt + cubicrAp) - c); 118 118 119 G4double R2 = 1.0 * ( At - 2 * Zt ) * Zp / 119 G4double R2 = 1.0 * ( At - 2 * Zt ) * Zp / ( Ap * At ); 120 120 121 121 122 G4double R3 = (0.176 / g4pow->A13(Ecm)) * c 122 G4double R3 = (0.176 / g4pow->A13(Ecm)) * cubicrAt * cubicrAp /(cubicrAt + cubicrAp); 123 123 124 G4double R = R1 + R2 + R3; 124 G4double R = R1 + R2 + R3; 125 125 126 xsection = 10 * pi * R * R * ( 1 - B / Ecm 126 xsection = 10 * pi * R * R * ( 1 - B / Ecm ); 127 xsection = xsection * millibarn; // mulit 127 xsection = xsection * millibarn; // mulitply xsection by millibarn 128 128 129 return xsection; 129 return xsection; 130 } 130 } 131 131 132 G4double 132 G4double 133 G4IonsShenCrossSection::calEcmValue(const G4do 133 G4IonsShenCrossSection::calEcmValue(const G4double mp, const G4double mt, 134 const G4do 134 const G4double Plab) 135 { 135 { 136 G4double Elab = std::sqrt ( mp * mp + Plab 136 G4double Elab = std::sqrt ( mp * mp + Plab * Plab ); 137 G4double Ecm = std::sqrt ( mp * mp + mt * m 137 G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt ); 138 G4double Pcm = Plab * mt / Ecm; 138 G4double Pcm = Plab * mt / Ecm; 139 G4double KEcm = std::sqrt ( Pcm * Pcm + mp 139 G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp; 140 return KEcm; 140 return KEcm; 141 } 141 } 142 142 143 143 144 G4double G4IonsShenCrossSection::calCeValue(co 144 G4double G4IonsShenCrossSection::calCeValue(const G4double ke) 145 { 145 { 146 // Calculate c value 146 // Calculate c value 147 // This value is indepenent from projectile 147 // This value is indepenent from projectile and target particle 148 // ke is projectile kinetic energy per nucle 148 // ke is projectile kinetic energy per nucleon in the Lab system 149 // with MeV unit 149 // with MeV unit 150 // fitting function is made by T. Koi 150 // fitting function is made by T. Koi 151 // There are no data below 30 MeV/n in Kox e 151 // There are no data below 30 MeV/n in Kox et al., 152 152 153 G4double Ce; 153 G4double Ce; 154 G4double log10_ke = std::log10 ( ke ); 154 G4double log10_ke = std::log10 ( ke ); 155 if (log10_ke > 1.5) 155 if (log10_ke > 1.5) 156 { 156 { 157 Ce = -10.0/std::pow(G4double(log10_ke), G 157 Ce = -10.0/std::pow(G4double(log10_ke), G4double(5)) + 2.0; 158 } 158 } 159 else 159 else 160 { 160 { 161 Ce = (-10.0/std::pow(G4double(1.5), G4dou 161 Ce = (-10.0/std::pow(G4double(1.5), G4double(5) ) + 2.0) / 162 std::pow(G4double(1.5) , G4double(3)) 162 std::pow(G4double(1.5) , G4double(3)) * std::pow(G4double(log10_ke), G4double(3)); 163 } 163 } 164 return Ce; 164 return Ce; 165 } 165 } 166 166 167 167