Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * 18 // * * 21 // * Parts of this code which have been devel 19 // * Parts of this code which have been developed by QinetiQ Ltd * 22 // * under contract to the European Space Agen << 20 // * under contract to the European Space Agency (ESA) are the * 23 // * intellectual property of ESA. Rights to u 21 // * intellectual property of ESA. Rights to use, copy, modify and * 24 // * redistribute this software for general pu 22 // * redistribute this software for general public use are granted * 25 // * in compliance with any licensing, distrib 23 // * in compliance with any licensing, distribution and development * 26 // * policy adopted by the Geant4 Collaboratio 24 // * policy adopted by the Geant4 Collaboration. This code has been * 27 // * written by QinetiQ Ltd for the European S 25 // * written by QinetiQ Ltd for the European Space Agency, under ESA * 28 // * contract 17191/03/NL/LvH (Aurora Programm << 26 // * contract 17191/03/NL/LvH (Aurora Programme). * 29 // * 27 // * * 30 // * By using, copying, modifying or distri << 28 // * By copying, distributing or modifying the Program (or any work * 31 // * any work based on the software) you ag << 29 // * based on the Program) you indicate your acceptance of this * 32 // * use in resulting scientific publicati << 30 // * statement, and all its terms. * 33 // * acceptance of all terms of the Geant4 Sof << 34 // ******************************************* 31 // ******************************************************************** 35 // 32 // 36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% << 33 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 37 // 34 // 38 // MODULE: G4EMDissociationCrossSection.cc 35 // MODULE: G4EMDissociationCrossSection.cc 39 // 36 // 40 // Version: B.1 37 // Version: B.1 41 // Date: 15/04/04 38 // Date: 15/04/04 42 // Author: P R Truscott 39 // Author: P R Truscott 43 // Organisation: QinetiQ Ltd, UK 40 // Organisation: QinetiQ Ltd, UK 44 // Customer: ESA/ESTEC, NOORDWIJK 41 // Customer: ESA/ESTEC, NOORDWIJK 45 // Contract: 17191/03/NL/LvH 42 // Contract: 17191/03/NL/LvH 46 // 43 // 47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% << 44 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 48 // 45 // 49 // CHANGE HISTORY 46 // CHANGE HISTORY 50 // -------------- 47 // -------------- 51 // 48 // 52 // 17 October 2003, P R Truscott, QinetiQ Ltd, 49 // 17 October 2003, P R Truscott, QinetiQ Ltd, UK 53 // Created. 50 // Created. 54 // 51 // 55 // 15 March 2004, P R Truscott, QinetiQ Ltd, U 52 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK 56 // Beta release 53 // Beta release 57 // 54 // 58 // 30 May 2005, J.P. Wellisch removed a compil << 55 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 59 // geant4 7.1. << 56 //////////////////////////////////////////////////////////////////////////////// 60 // 09 November 2010, V.Ivanchenko make class a << 61 // set cross section for Hyd << 62 // << 63 // 17 August 2011, V.Ivanchenko, provide migra << 64 // sections considering this c << 65 // << 66 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% << 67 ////////////////////////////////////////////// << 68 // 57 // 69 #include "G4EMDissociationCrossSection.hh" 58 #include "G4EMDissociationCrossSection.hh" 70 #include "G4PhysicalConstants.hh" << 59 #include "G4PhysicsFreeVector.hh" 71 #include "G4SystemOfUnits.hh" << 72 #include "G4ParticleTable.hh" 60 #include "G4ParticleTable.hh" 73 #include "G4IonTable.hh" 61 #include "G4IonTable.hh" 74 #include "G4HadTmpUtil.hh" << 75 #include "globals.hh" 62 #include "globals.hh" 76 #include "G4NistManager.hh" << 63 //////////////////////////////////////////////////////////////////////////////// 77 << 64 // 78 << 79 G4EMDissociationCrossSection::G4EMDissociation 65 G4EMDissociationCrossSection::G4EMDissociationCrossSection () 80 : G4VCrossSectionDataSet("Electromagnetic dis << 81 { 66 { 82 // This function makes use of the class whic << 67 // 83 // spectrum, G4EMDissociationSpectrum. << 68 // 84 << 69 // This function makes use of the class which can sample the virtual photon >> 70 // spectrum, G4EMDissociationSpectrum. >> 71 // 85 thePhotonSpectrum = new G4EMDissociationSpec 72 thePhotonSpectrum = new G4EMDissociationSpectrum(); 86 << 73 // 87 // Define other constants. << 74 // 88 << 75 // Define other constants. >> 76 // 89 r0 = 1.18 * fermi; 77 r0 = 1.18 * fermi; 90 J = 36.8 * MeV; 78 J = 36.8 * MeV; 91 Qprime = 17.0 * MeV; 79 Qprime = 17.0 * MeV; 92 epsilon = 0.0768; 80 epsilon = 0.0768; 93 xd = 0.25; 81 xd = 0.25; 94 } 82 } 95 << 83 //////////////////////////////////////////////////////////////////////////////// 96 ////////////////////////////////////////////// << 84 // 97 << 98 G4EMDissociationCrossSection::~G4EMDissociatio 85 G4EMDissociationCrossSection::~G4EMDissociationCrossSection() 99 { 86 { 100 delete thePhotonSpectrum; 87 delete thePhotonSpectrum; 101 } 88 } 102 ////////////////////////////////////////////// << 89 //////////////////////////////////////////////////////////////////////////////// 103 // 90 // 104 G4bool << 91 G4bool G4EMDissociationCrossSection::IsApplicable 105 G4EMDissociationCrossSection::IsElementApplica << 92 (const G4DynamicParticle *theDynamicParticle, const G4Element* theElement) 106 G4int /*ZZ*/, const G4Material*) << 107 { 93 { 108 // 94 // >> 95 // 109 // The condition for the applicability of this 96 // The condition for the applicability of this class is that the projectile 110 // must be an ion and the target must have mor 97 // must be an ion and the target must have more than one nucleon. In reality 111 // the value of A for either the projectile or 98 // the value of A for either the projectile or target could be much higher, 112 // since for cases where both he projectile an 99 // since for cases where both he projectile and target are medium to small 113 // Z, the probability of the EMD process is, I 100 // Z, the probability of the EMD process is, I think, VERY small. 114 // 101 // 115 if (G4ParticleTable::GetParticleTable()->Get << 102 if (G4ParticleTable::GetParticleTable()->GetIonTable()-> >> 103 IsIon(theDynamicParticle->GetDefinition()) && theElement->GetN() > 1.0) 116 return true; 104 return true; 117 } else { << 105 else 118 return false; 106 return false; 119 } << 120 } 107 } 121 << 108 //////////////////////////////////////////////////////////////////////////////// 122 ////////////////////////////////////////////// << 123 // 109 // 124 G4double G4EMDissociationCrossSection::GetElem << 110 G4double G4EMDissociationCrossSection::GetCrossSection 125 (const G4DynamicParticle* theDynamicParticle << 111 (const G4DynamicParticle *theDynamicParticle, const G4Element* theElement, 126 const G4Material*) << 112 G4double ) 127 { 113 { 128 // VI protection for Hydrogen << 114 // 129 if(1 >= Z) { return 0.0; } << 115 // 130 << 116 // Get relevant information about the projectile and target (A, Z) and 131 // Zero cross-section for particles with kin << 117 // velocity of the projectile. 132 // possible abort signal from bad arithmetic << 118 // 133 if ( theDynamicParticle->GetKineticEnergy() << 119 G4ParticleDefinition *definitionP = theDynamicParticle->GetDefinition(); 134 << 135 // << 136 // Get relevant information about the projec << 137 // velocity of the projectile. << 138 // << 139 const G4ParticleDefinition *definitionP = th << 140 G4double AP = definitionP->GetBaryonNumber 120 G4double AP = definitionP->GetBaryonNumber(); 141 G4double ZP = definitionP->GetPDGCharge(); 121 G4double ZP = definitionP->GetPDGCharge(); 142 G4double b = theDynamicParticle->GetBeta( << 122 G4double b = theDynamicParticle->Get4Momentum().beta(); 143 if (b <= 0.0 && b >= 1.0) { return 0.0; } << 123 // G4double bsq = b * b; 144 124 145 G4double AT = G4NistManager::Instance()->G << 125 G4double AT = theElement->GetN(); 146 G4double ZT = (G4double)Z; << 126 G4double ZT = theElement->GetZ(); 147 G4double bmin = thePhotonSpectrum->GetCloses 127 G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b); 148 // << 128 // 149 // << 129 // 150 // Calculate the cross-section for the proje << 130 // Calculate the cross-section for the projectile and then the target. The 151 // information is returned in a G4PhysicsFre << 131 // information is returned in a G4PhysicsFreeVector, which separates out the 152 // cross-sections for the E1 and E2 moments << 132 // cross-sections for the E1 and E2 moments of the virtual photon field, and 153 // the energies (GDR and GQR). << 133 // the energies (GDR and GQR). 154 // << 134 // 155 G4PhysicsFreeVector *theProjectileCrossSecti << 135 G4PhysicsFreeVector *theProjectileCrossSections = 156 GetCrossSectionForProjectile (AP, ZP, AT, 136 GetCrossSectionForProjectile (AP, ZP, AT, ZT, b, bmin); 157 G4double crossSection = 137 G4double crossSection = 158 (*theProjectileCrossSections)[0]+(*theProj 138 (*theProjectileCrossSections)[0]+(*theProjectileCrossSections)[1]; 159 delete theProjectileCrossSections; 139 delete theProjectileCrossSections; 160 G4PhysicsFreeVector *theTargetCrossSections << 140 G4PhysicsFreeVector *theTargetCrossSections = 161 GetCrossSectionForTarget (AP, ZP, AT, ZT, 141 GetCrossSectionForTarget (AP, ZP, AT, ZT, b, bmin); 162 crossSection += << 142 crossSection += 163 (*theTargetCrossSections)[0]+(*theTargetCr 143 (*theTargetCrossSections)[0]+(*theTargetCrossSections)[1]; 164 delete theTargetCrossSections; 144 delete theTargetCrossSections; >> 145 165 return crossSection; 146 return crossSection; 166 } 147 } 167 ////////////////////////////////////////////// 148 //////////////////////////////////////////////////////////////////////////////// 168 // 149 // 169 G4PhysicsFreeVector * 150 G4PhysicsFreeVector * 170 G4EMDissociationCrossSection::GetCrossSectionF << 151 G4EMDissociationCrossSection::GetCrossSectionForProjectile (G4double AP, 171 G4double ZP, G4double /* AT */, G4double ZT, << 152 G4double ZP, G4double AT, G4double ZT, G4double b, G4double bmin) 172 { 153 { 173 // 154 // 174 // 155 // 175 // Use Wilson et al's approach to calculate th 156 // Use Wilson et al's approach to calculate the cross-sections due to the E1 176 // and E2 moments of the field at the giant di 157 // and E2 moments of the field at the giant dipole and quadrupole resonances 177 // respectively, Note that the algorithm is t 158 // respectively, Note that the algorithm is traditionally applied to the 178 // EMD break-up of the projectile in the field 159 // EMD break-up of the projectile in the field of the target, as is implemented 179 // here. 160 // here. 180 // 161 // 181 // Initialise variables and calculate the ener 162 // Initialise variables and calculate the energies for the GDR and GQR. 182 // 163 // 183 G4double AProot3 = G4Pow::GetInstance()->A13 << 164 G4double AProot3 = pow(AP,1.0/3.0); 184 G4double u = 3.0 * J / Qprime / AProot 165 G4double u = 3.0 * J / Qprime / AProot3; 185 G4double R0 = r0 * AProot3; 166 G4double R0 = r0 * AProot3; 186 G4double E_GDR = hbarc / std::sqrt(0.7*amu_ << 167 G4double E_GDR = hbarc / sqrt(0.7*amu_c2*R0*R0/8.0/J* 187 (1.0 + u - (1.0 + epsilon + 3.0*u)/(1.0 + 168 (1.0 + u - (1.0 + epsilon + 3.0*u)/(1.0 + epsilon + u)*epsilon)); 188 G4double E_GQR = 63.0 * MeV / AProot3; 169 G4double E_GQR = 63.0 * MeV / AProot3; 189 // 170 // 190 // 171 // 191 // Determine the virtual photon spectra at the 172 // Determine the virtual photon spectra at these energies. 192 // 173 // 193 G4double ZTsq = ZT * ZT; 174 G4double ZTsq = ZT * ZT; 194 G4double nE1 = ZTsq * 175 G4double nE1 = ZTsq * 195 thePhotonSpectrum->GetGeneralE1Spectrum(E_ 176 thePhotonSpectrum->GetGeneralE1Spectrum(E_GDR, b, bmin); 196 G4double nE2 = ZTsq * 177 G4double nE2 = ZTsq * 197 thePhotonSpectrum->GetGeneralE2Spectrum(E_ 178 thePhotonSpectrum->GetGeneralE2Spectrum(E_GQR, b, bmin); 198 // 179 // 199 // 180 // 200 // Now calculate the cross-section of the proj 181 // Now calculate the cross-section of the projectile for interaction with the 201 // E1 and E2 fields. 182 // E1 and E2 fields. 202 // 183 // 203 G4double sE1 = 60.0 * millibarn * MeV * (AP- 184 G4double sE1 = 60.0 * millibarn * MeV * (AP-ZP)*ZP/AP; 204 G4double sE2 = 0.22 * microbarn / MeV * ZP * 185 G4double sE2 = 0.22 * microbarn / MeV * ZP * AProot3 * AProot3; 205 if (AP > 100.0) sE2 *= 0.9; 186 if (AP > 100.0) sE2 *= 0.9; 206 else if (AP > 40.0) sE2 *= 0.6; 187 else if (AP > 40.0) sE2 *= 0.6; 207 else sE2 *= 0.3; 188 else sE2 *= 0.3; 208 // 189 // 209 // 190 // 210 // ... and multiply with the intensity of the 191 // ... and multiply with the intensity of the virtual photon spectra to get 211 // the probability of interaction. 192 // the probability of interaction. 212 // 193 // 213 G4PhysicsFreeVector *theCrossSectionVector = 194 G4PhysicsFreeVector *theCrossSectionVector = new G4PhysicsFreeVector(2); 214 theCrossSectionVector->PutValue(0, E_GDR, sE 195 theCrossSectionVector->PutValue(0, E_GDR, sE1*nE1); 215 theCrossSectionVector->PutValue(1, E_GQR, sE 196 theCrossSectionVector->PutValue(1, E_GQR, sE2*nE2*E_GQR*E_GQR); 216 << 197 217 return theCrossSectionVector; 198 return theCrossSectionVector; 218 } 199 } 219 << 220 ////////////////////////////////////////////// 200 //////////////////////////////////////////////////////////////////////////////// 221 // 201 // 222 G4PhysicsFreeVector * 202 G4PhysicsFreeVector * 223 G4EMDissociationCrossSection::GetCrossSectionF << 203 G4EMDissociationCrossSection::GetCrossSectionForTarget (G4double AP, 224 G4double ZP, G4double AT, G4double ZT, G4dou 204 G4double ZP, G4double AT, G4double ZT, G4double b, G4double bmin) 225 { 205 { 226 // 206 // >> 207 // 227 // This is a cheaky little member function to 208 // This is a cheaky little member function to calculate the probability of 228 // EMD for the target in the field of the proj 209 // EMD for the target in the field of the projectile ... just by reversing the 229 // A and Z's for the participants. 210 // A and Z's for the participants. 230 // 211 // 231 return GetCrossSectionForProjectile (AT, ZT, 212 return GetCrossSectionForProjectile (AT, ZT, AP, ZP, b, bmin); 232 } 213 } 233 << 234 ////////////////////////////////////////////// 214 //////////////////////////////////////////////////////////////////////////////// 235 // 215 // 236 G4double 216 G4double 237 G4EMDissociationCrossSection::GetWilsonProbabi << 217 G4EMDissociationCrossSection::GetWilsonProbabilityForProtonDissociation 238 << 218 (G4double A, G4double Z) 239 { 219 { 240 // 220 // >> 221 // 241 // This is a simple algorithm to choose whethe 222 // This is a simple algorithm to choose whether a proton or neutron is ejected 242 // from the nucleus in the EMD interaction. 223 // from the nucleus in the EMD interaction. 243 // 224 // 244 G4double p = 0.0; 225 G4double p = 0.0; 245 if (Z < 2.0) << 226 if (Z < 6.0) 246 p = 0.0; // To avoid to remove one proton << 247 else if (Z < 6.0) << 248 p = 0.5; 227 p = 0.5; 249 else if (Z < 8.0) 228 else if (Z < 8.0) 250 p = 0.6; 229 p = 0.6; 251 else if (Z < 14.0) 230 else if (Z < 14.0) 252 p = 0.7; 231 p = 0.7; 253 else 232 else 254 { 233 { 255 G4double p1 = (G4double) Z / (G4double) A; 234 G4double p1 = (G4double) Z / (G4double) A; 256 G4double p2 = 1.95*G4Exp(-0.075*Z); << 235 G4double p2 = 1.95*exp(-0.075*Z); 257 if (p1 < p2) p = p1; 236 if (p1 < p2) p = p1; 258 else p = p2; 237 else p = p2; 259 } 238 } 260 239 261 return p; 240 return p; 262 } 241 } >> 242 //////////////////////////////////////////////////////////////////////////////// >> 243 // 263 244