Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * authors in the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4PhotoNuclearCrossSection.hh,v 1.5 2001/11/26 22:04:34 stesting Exp $ >> 25 // GEANT4 tag $Name: geant4-04-00 $ >> 26 // >> 27 // 27 // GEANT4 physics class: G4PhotoNuclearCrossSe 28 // GEANT4 physics class: G4PhotoNuclearCrossSection -- header file 28 // Created: M.V. Kossov, CERN/ITEP(Moscow), 10 << 29 // M.V. Kossov, ITEP(Moscow), 24-OCT-01 29 // The last update: M.V. Kossov, CERN/ITEP (Mo << 30 // 30 31 31 #ifndef G4PhotoNuclearCrossSection_h 32 #ifndef G4PhotoNuclearCrossSection_h 32 #define G4PhotoNuclearCrossSection_h 1 33 #define G4PhotoNuclearCrossSection_h 1 33 34 34 #include "G4VCrossSectionDataSet.hh" 35 #include "G4VCrossSectionDataSet.hh" >> 36 /////////#include "G4HadronCrossSections.hh" 35 #include "G4DynamicParticle.hh" 37 #include "G4DynamicParticle.hh" 36 #include "G4Element.hh" 38 #include "G4Element.hh" >> 39 //#include "G4QPDGCode.hh" 37 #include "G4ParticleTable.hh" 40 #include "G4ParticleTable.hh" 38 #include "G4NucleiProperties.hh" 41 #include "G4NucleiProperties.hh" 39 #include "G4NistManager.hh" << 42 #include "G4NucleiPropertiesTable.hh" 40 #include <vector> << 43 #include "g4std/vector" 41 44 42 class G4PhotoNuclearCrossSection : public G4VC 45 class G4PhotoNuclearCrossSection : public G4VCrossSectionDataSet 43 { 46 { 44 public: 47 public: 45 << 48 46 G4PhotoNuclearCrossSection(); << 49 G4PhotoNuclearCrossSection() // Constructor @@?? 47 ~G4PhotoNuclearCrossSection() override; << 50 { 48 << 51 //theHadronCrossSections = G4HadronCrossSections::Instance(); 49 static const char* Default_Name() {return << 52 } 50 << 53 51 void CrossSectionDescription(std::ostream& << 54 ~G4PhotoNuclearCrossSection() {} 52 << 55 53 G4bool IsIsoApplicable(const G4DynamicPart << 56 G4bool IsApplicable(const G4DynamicParticle* aParticle, const G4Element* anElement) 54 const G4Element* el << 57 { 55 const G4Material* mat = nullptr) over << 58 //return theHadronCrossSections->IsApplicable(aParticle, anElement); 56 << 59 // Possible prototype 57 G4bool IsElementApplicable(const G4Dynamic << 60 G4bool result = false; 58 const G4Materia << 61 if( aParticle->GetDefinition()->GetPDGEncoding()==22) result = true; 59 << 62 return result; 60 G4double GetIsoCrossSection(const G4Dynami << 63 } 61 G4int Z, G4int << 64 62 const G4Isotop << 65 G4double GetCrossSection(const G4DynamicParticle* aParticle, const G4Element* anElement, 63 const G4Elemen << 66 G4double temperature=0.); 64 const G4Materi << 67 //{ 65 << 68 // return theHadronCrossSections->GetInelasticCrossSection(aParticle, 66 G4double GetElementCrossSection(const G4Dy << 69 // anElement); 67 const G4Ma << 70 //} 68 << 71 69 G4double ComputeElementXSection(G4double e << 72 void BuildPhysicsTable(const G4ParticleDefinition&) {} 70 << 73 71 G4double ComputeIsoXSection(G4double energ << 74 void DumpPhysicsTable(const G4ParticleDefinition&) {} 72 << 73 G4PhotoNuclearCrossSection& operator= << 74 (const G4PhotoNuclearCrossSection& right) << 75 G4PhotoNuclearCrossSection(const G4PhotoNu << 76 75 77 private: 76 private: 78 << 77 G4double GetGDRc1(G4int Z, G4int N); 79 G4int GetFunctions(G4double a, G4double* y << 78 G4double GetGDRp1(G4int Z, G4int N); 80 G4double EquLinearFit(G4double X, G4int N, << 79 G4double GetGDRt1(G4int Z, G4int N); 81 const G4double XD, c << 80 G4double GetGDRs1(G4int Z, G4int N); 82 G4double ThresholdEnergy(G4int Z, G4int N) << 81 G4double GetGDRc2(G4int Z, G4int N); 83 << 82 G4double GetGDRp2(G4int Z, G4int N); 84 G4int lastZ = 0; // The last Z << 83 G4double GetGDRt2(G4int Z, G4int N); 85 G4double lastSig = 0.0; // Last value << 84 G4double GetGDRs2(G4int Z, G4int N); 86 G4double* lastGDR = nullptr; // Pointer to << 85 G4double GetQDAmp(G4int Z, G4int N); 87 G4double* lastHEN = nullptr; // Pointer to << 86 G4double GetDelAm(G4int Z, G4int N); 88 G4double lastE = 0.0; // Last used << 87 G4double GetDelWd(G4int Z, G4int N); 89 G4double lastTH = 0.0; // Last value << 88 G4double GetDelPs(G4int Z, G4int N); 90 G4double lastSP = 0.0; // Last value << 89 G4double GetDelTh(G4int Z, G4int N); 91 << 90 G4double GetDelSl(G4int Z, G4int N); 92 // Vector of pointers to the GDRPhotonucle << 91 G4double GetRopAm(G4int Z, G4int N); 93 std::vector <G4double*> GDR; << 92 G4double GetRopWd(G4int Z, G4int N); 94 << 93 G4double GetRopPs(G4int Z, G4int N); 95 // store deuteron, triton, He3 XS << 94 G4double LinearFit(G4double X, G4int N, const G4double* XN, const G4double* YN); 96 G4double* deuteron_GDR = nullptr; << 95 G4double ThresholdEnergy(G4int Z, G4int N); 97 G4double* deuteron_HR = nullptr; << 96 98 G4double deuteron_TH = 0.0; << 97 // Body 99 G4double deuteron_SP = 0.0; << 98 //private: 100 G4double* triton_GDR = nullptr; << 99 101 G4double* triton_HR = nullptr; << 100 //G4HadronCrossSections* theHadronCrossSections; 102 G4double triton_TH = 0.0; << 103 G4double triton_SP = 0.0; << 104 G4double* he3_GDR = nullptr; << 105 G4double* he3_HR = nullptr; << 106 G4double he3_TH = 0.0; << 107 G4double he3_SP = 0.0; << 108 << 109 // Vector of pointers to the HighEnPhotonu << 110 std::vector <G4double*> HEN; << 111 << 112 std::vector <G4double> spA; // shadowing << 113 std::vector <G4double> eTH; // energy t << 114 << 115 G4NistManager* nistmngr; << 116 << 117 G4double mNeut; << 118 G4double mProt; << 119 }; 101 }; >> 102 >> 103 // Calculate the logAmplitude of the 1-st GDR maximum >> 104 inline G4double G4PhotoNuclearCrossSection::GetGDRc1(G4int Z, G4int N) >> 105 { >> 106 static const G4int nN=13; >> 107 static G4double X[nN]={0.693,1.386,1.792,1.946,2.197,2.485,2.773,3.296,3.689,4.152,4.777,5.334, >> 108 5.472}; >> 109 static G4double Y[nN]={4.2,13.9,13.9,13.6,20.5,28.2,28.7,28.5,29.,28.4,28.15,27.8,25.9}; >> 110 >> 111 return LinearFit(log(G4double(Z+N)), nN, X, Y); >> 112 } >> 113 >> 114 // Calculate the A-power of the 1-st GDR maximum >> 115 inline G4double G4PhotoNuclearCrossSection::GetGDRp1(G4int Z, G4int N) >> 116 { >> 117 G4double p=8.; >> 118 G4int A=Z+N; >> 119 if(A<12) p=6.; >> 120 if(A< 8) p=4.; >> 121 if(A< 4) p=2.; >> 122 return p; >> 123 } >> 124 >> 125 // Calculate the Threshold of the 1-st GDR maximum >> 126 inline G4double G4PhotoNuclearCrossSection::GetGDRt1(G4int Z, G4int N) >> 127 { >> 128 static const G4int nN=13; >> 129 static G4double X[nN]={0.693,1.386,1.792,1.946,2.197,2.485,2.773,3.296,3.689,4.152,4.777,5.334, >> 130 5.472}; >> 131 static G4double Y[nN]={1.4,3.13,3.08,2.9,3.09,3.09,3.09,3.02,2.98,2.9,2.745,2.585,2.42}; >> 132 >> 133 return LinearFit(log(G4double(Z+N)), nN, X, Y); >> 134 } >> 135 >> 136 // Calculate the Slope of the 1-st GDR maximum >> 137 inline G4double G4PhotoNuclearCrossSection::GetGDRs1(G4int Z, G4int N) >> 138 { >> 139 static const G4int nN=13; >> 140 static G4double X[nN]={0.693,1.386,1.792,1.946,2.197,2.485,2.773,3.296,3.689,4.152,4.777,5.334, >> 141 5.472}; >> 142 static G4double Y[nN]={.12,.12,.12,.12,.06,.03,.03,.06,.05,.065,.06,.059,.061}; >> 143 >> 144 return LinearFit(log(G4double(Z+N)), nN, X, Y); >> 145 } >> 146 >> 147 // Calculate the logAmplitude of the 2-nd GDR maximum >> 148 inline G4double G4PhotoNuclearCrossSection::GetGDRc2(G4int Z, G4int N) >> 149 { >> 150 static const G4int nN=13; >> 151 static G4double X[nN]={0.693,1.386,1.792,1.946,2.197,2.485,2.773,3.296,3.689,4.152,4.777,5.334, >> 152 5.472}; >> 153 static G4double Y[nN]={1.85,7.5,6.3,8.2,12.35,15.8,16.1,16.2,16.8,17.1,16.1,15.5,16.6}; >> 154 >> 155 return LinearFit(log(G4double(Z+N)), nN, X, Y); >> 156 } >> 157 >> 158 // Calculate the A-power of the 2-nd GDR maximum >> 159 inline G4double G4PhotoNuclearCrossSection::GetGDRp2(G4int Z, G4int N) >> 160 { >> 161 G4double p=4.; >> 162 G4int A=Z+N; >> 163 if(A<12) p=3.; >> 164 if(A< 8) p=2.; >> 165 if(A< 4) p=1.; >> 166 return p; >> 167 } >> 168 >> 169 // Calculate the Threshold of the 2-nd GDR maximum >> 170 inline G4double G4PhotoNuclearCrossSection::GetGDRt2(G4int Z, G4int N) >> 171 { >> 172 static const G4int nN=13; >> 173 static G4double X[nN]={0.693,1.386,1.792,1.946,2.197,2.485,2.773,3.296,3.689,4.152,4.777,5.334, >> 174 5.472}; >> 175 static G4double Y[nN]={1.4,3.22,3.11,3.39,3.48,3.34,3.46,3.35,3.4,3.22,3.09,3.05,2.6}; >> 176 >> 177 return LinearFit(log(G4double(Z+N)), nN, X, Y); >> 178 } >> 179 >> 180 // Calculate the Slope of the 2-nd GDR maximum >> 181 inline G4double G4PhotoNuclearCrossSection::GetGDRs2(G4int Z, G4int N) >> 182 { >> 183 static const G4int nN=13; >> 184 static G4double X[nN]={0.693,1.386,1.792,1.946,2.197,2.485,2.773,3.296,3.689,4.152,4.777,5.334, >> 185 5.472}; >> 186 static G4double Y[nN]={.12,.094,.09,.088,.14,.082,.079,.074,.071,.065,.061,.058,.05}; >> 187 >> 188 return LinearFit(log(G4double(Z+N)), nN, X, Y); >> 189 } >> 190 >> 191 // Calculate the Amplitude of the QuasiDeuteron region [exp/(1+exp)] >> 192 inline G4double G4PhotoNuclearCrossSection::GetQDAmp(G4int Z, G4int N) >> 193 { >> 194 G4double A=Z+N; >> 195 G4double lnA=log(A); >> 196 return exp(-1.7+lnA*0.84)/(1.+exp(7*(2.38-lnA))); >> 197 } >> 198 >> 199 // Calculate the Amplitude of the Delta Resonance [.41*(Z+N)] >> 200 inline G4double G4PhotoNuclearCrossSection::GetDelAm(G4int Z, G4int N) >> 201 { >> 202 G4double A=Z+N; >> 203 return .41*A; >> 204 } >> 205 >> 206 // Calculate the Width of the Delta Resonance [11.9-ln(A)*1.24] >> 207 inline G4double G4PhotoNuclearCrossSection::GetDelWd(G4int Z, G4int N) >> 208 { >> 209 G4double A=Z+N; >> 210 G4double lnA=log(A); >> 211 return 11.9-lnA*1.24; >> 212 } >> 213 >> 214 // Calculate the Position of the Delta Resonance [5.84-.09/(1+.003*A*A)] >> 215 inline G4double G4PhotoNuclearCrossSection::GetDelPs(G4int Z, G4int N) >> 216 { >> 217 G4double A=Z+N; >> 218 return 5.84-.09/(1+.003*A*A); >> 219 } >> 220 >> 221 // Calculate the Threshold of the Delta Resonance [5.13-.00075*A] >> 222 inline G4double G4PhotoNuclearCrossSection::GetDelTh(G4int Z, G4int N) >> 223 { >> 224 G4double A=Z+N; >> 225 return 5.13-0.00075*A; >> 226 } >> 227 >> 228 // Calculate the Threshold of the Delta Resonance [.04->.09] >> 229 inline G4double G4PhotoNuclearCrossSection::GetDelSl(G4int Z, G4int N) >> 230 { >> 231 G4double A=Z+N; >> 232 if(A<7) return .04; >> 233 return .09; >> 234 } >> 235 >> 236 // Calculate the Amplitude of the Roper Resonance [-2.+ln(A)*0.84] >> 237 inline G4double G4PhotoNuclearCrossSection::GetRopAm(G4int Z, G4int N) >> 238 { >> 239 G4double A=Z+N; >> 240 G4double lnA=log(A); >> 241 return exp(-2.+lnA*0.84); >> 242 } >> 243 >> 244 // Calculate the Width of the Roper Resonance [.1+1.65*ln(A)] >> 245 inline G4double G4PhotoNuclearCrossSection::GetRopWd(G4int Z, G4int N) >> 246 { >> 247 G4double A=Z+N; >> 248 G4double lnA=log(A); >> 249 return .1+1.65*lnA; >> 250 } >> 251 >> 252 // Calculate the Position of the Roper Resonance [6.46+.061*ln(A)] >> 253 inline G4double G4PhotoNuclearCrossSection::GetRopPs(G4int Z, G4int N) >> 254 { >> 255 G4double A=Z+N; >> 256 G4double lnA=log(A); >> 257 return 6.46+.061*lnA; >> 258 } >> 259 >> 260 >> 261 // Gives the threshold energy for different nuclei (min of p- and n-threshold) >> 262 inline G4double G4PhotoNuclearCrossSection::ThresholdEnergy(G4int Z, G4int N) >> 263 { >> 264 // CHIPS - Direct GEANT >> 265 //static const G4double mNeut = G4QPDGCode(2112).GetMass(); >> 266 //static const G4double mProt = G4QPDGCode(2212).GetMass(); >> 267 static const G4double mNeut = G4NucleiProperties::GetNuclearMass(1,0); >> 268 static const G4double mProt = G4NucleiProperties::GetNuclearMass(1,1); >> 269 // --------- >> 270 static const G4double infEn = 9.e27; >> 271 >> 272 G4int A=Z+N; >> 273 if(A<1) return infEn; >> 274 else if(A==1) return 134.9766; // Pi0 threshold for the nucleon >> 275 // CHIPS - Direct GEANT >> 276 //G4double mT= G4QPDGCode(111).GetNuclMass(Z,N,0); >> 277 G4double mT= 0.; >> 278 if(G4NucleiPropertiesTable::IsInTable(Z,A)) mT=G4NucleiProperties::GetNuclearMass(A,Z); >> 279 else return 0.; // If it is not in the Table of Stable Nuclei, then the Threshold=0 >> 280 // --------- >> 281 G4double mP= infEn; >> 282 //if(Z) mP= G4QPDGCode(111).GetNuclMass(Z-1,N,0); >> 283 if(Z&&G4NucleiPropertiesTable::IsInTable(Z-1,A-1)) mP=G4NucleiProperties::GetNuclearMass(A-1,Z-1); >> 284 else return infEn; >> 285 G4double mN= infEn; >> 286 //if(N) mN= G4QPDGCode(111).GetNuclMass(Z,N-1,0); >> 287 if(N&&G4NucleiPropertiesTable::IsInTable(Z,A-1)) mN=G4NucleiProperties::GetNuclearMass(A-1,Z); >> 288 else return infEn; >> 289 G4double dP= mP+mProt-mT; >> 290 G4double dN= mN+mNeut-mT; >> 291 if(dP<dN)dN=dP; >> 292 return dN; >> 293 } 120 294 121 #endif 295 #endif 122 296