Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4XTRRegularRadModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4XTRRegularRadModel.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4XTRRegularRadModel.cc (Version 11.2.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26                                                    26 
 27 #include "G4XTRRegularRadModel.hh"                 27 #include "G4XTRRegularRadModel.hh"
 28                                                    28 
 29 #include "G4PhysicalConstants.hh"                  29 #include "G4PhysicalConstants.hh"
 30                                                    30 
 31 //////////////////////////////////////////////     31 ////////////////////////////////////////////////////////////////////////////
 32 // Constructor, destructor                         32 // Constructor, destructor
 33 G4XTRRegularRadModel::G4XTRRegularRadModel(G4L     33 G4XTRRegularRadModel::G4XTRRegularRadModel(G4LogicalVolume* anEnvelope,
 34                                            G4M     34                                            G4Material* foilMat,
 35                                            G4M     35                                            G4Material* gasMat, G4double a,
 36                                            G4d     36                                            G4double b, G4int n,
 37                                            con     37                                            const G4String& processName)
 38   : G4VXTRenergyLoss(anEnvelope, foilMat, gasM     38   : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, n, processName)
 39 {                                                  39 {
 40   G4cout << " XTR Regular discrete radiator mo     40   G4cout << " XTR Regular discrete radiator model is called" << G4endl;
 41                                                    41 
 42   fExitFlux = true;                                42   fExitFlux = true;
 43 }                                                  43 }
 44                                                    44 
 45 //////////////////////////////////////////////     45 ///////////////////////////////////////////////////////////////////////////
 46 G4XTRRegularRadModel::~G4XTRRegularRadModel()      46 G4XTRRegularRadModel::~G4XTRRegularRadModel() = default;
 47                                                    47 
 48 //////////////////////////////////////////////     48 ///////////////////////////////////////////////////////////////////////////
 49 void G4XTRRegularRadModel::ProcessDescription(     49 void G4XTRRegularRadModel::ProcessDescription(std::ostream& out) const
 50 {                                                  50 {
 51   out << "Describes X-ray transition radiation     51   out << "Describes X-ray transition radiation with thickness of gaps and "
 52          "plates\n"                                52          "plates\n"
 53          "fixed.\n";                               53          "fixed.\n";
 54 }                                                  54 }
 55                                                    55 
 56 //////////////////////////////////////////////     56 ///////////////////////////////////////////////////////////////////////////
 57 G4double G4XTRRegularRadModel::SpectralXTRdEdx     57 G4double G4XTRRegularRadModel::SpectralXTRdEdx(G4double energy)
 58 {                                                  58 {
 59   static constexpr G4double cofPHC = 4. * pi *     59   static constexpr G4double cofPHC = 4. * pi * hbarc;
 60   G4double result, sum = 0., tmp, cof1, cof2,      60   G4double result, sum = 0., tmp, cof1, cof2, cofMin, theta2, theta2k;
 61   G4double aMa, bMb, sigma, dump;                  61   G4double aMa, bMb, sigma, dump;
 62   G4int k, kMax, kMin;                             62   G4int k, kMax, kMin;
 63                                                    63 
 64   aMa   = fPlateThick * GetPlateLinearPhotoAbs     64   aMa   = fPlateThick * GetPlateLinearPhotoAbs(energy);
 65   bMb   = fGasThick * GetGasLinearPhotoAbs(ene     65   bMb   = fGasThick * GetGasLinearPhotoAbs(energy);
 66   sigma = 0.5 * (aMa + bMb);                       66   sigma = 0.5 * (aMa + bMb);
 67   dump  = std::exp(-fPlateNumber * sigma);         67   dump  = std::exp(-fPlateNumber * sigma);
 68   if(verboseLevel > 2)                             68   if(verboseLevel > 2)
 69     G4cout << " dump = " << dump << G4endl;        69     G4cout << " dump = " << dump << G4endl;
 70   tmp  = (fSigma1 - fSigma2) / cofPHC / energy     70   tmp  = (fSigma1 - fSigma2) / cofPHC / energy;
 71   cof1 = fPlateThick * tmp;                        71   cof1 = fPlateThick * tmp;
 72   cof2 = fGasThick * tmp;                          72   cof2 = fGasThick * tmp;
 73                                                    73 
 74   cofMin = energy * (fPlateThick + fGasThick)      74   cofMin = energy * (fPlateThick + fGasThick) / fGamma / fGamma;
 75   cofMin += (fPlateThick * fSigma1 + fGasThick     75   cofMin += (fPlateThick * fSigma1 + fGasThick * fSigma2) / energy;
 76   cofMin /= cofPHC;                                76   cofMin /= cofPHC;
 77                                                    77 
 78   theta2 = cofPHC / (energy * (fPlateThick + f     78   theta2 = cofPHC / (energy * (fPlateThick + fGasThick));
 79                                                    79 
 80   kMin = G4int(cofMin);                            80   kMin = G4int(cofMin);
 81   if(cofMin > kMin)                                81   if(cofMin > kMin)
 82     kMin++;                                        82     kMin++;
 83                                                    83 
 84   kMax = kMin + 49;                                84   kMax = kMin + 49;
 85                                                    85 
 86   if(verboseLevel > 2)                             86   if(verboseLevel > 2)
 87   {                                                87   {
 88     G4cout << cof1 << "     " << cof2 << "         88     G4cout << cof1 << "     " << cof2 << "        " << cofMin << G4endl;
 89     G4cout << "kMin = " << kMin << ";    kMax      89     G4cout << "kMin = " << kMin << ";    kMax = " << kMax << G4endl;
 90   }                                                90   }
 91   for(k = kMin; k <= kMax; ++k)                    91   for(k = kMin; k <= kMax; ++k)
 92   {                                                92   {
 93     tmp    = pi * fPlateThick * (k + cof2) / (     93     tmp    = pi * fPlateThick * (k + cof2) / (fPlateThick + fGasThick);
 94     result = (k - cof1) * (k - cof1) * (k + co     94     result = (k - cof1) * (k - cof1) * (k + cof2) * (k + cof2);
 95     if(k == kMin && kMin == G4int(cofMin))         95     if(k == kMin && kMin == G4int(cofMin))
 96     {                                              96     {
 97       sum +=                                       97       sum +=
 98         0.5 * std::sin(tmp) * std::sin(tmp) *      98         0.5 * std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
 99     }                                              99     }
100     else                                          100     else
101     {                                             101     {
102       sum += std::sin(tmp) * std::sin(tmp) * s    102       sum += std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
103     }                                             103     }
104     theta2k = std::sqrt(theta2 * std::abs(k -     104     theta2k = std::sqrt(theta2 * std::abs(k - cofMin));
105                                                   105 
106     if(verboseLevel > 2)                          106     if(verboseLevel > 2)
107     {                                             107     {
108       G4cout << k << "   " << theta2k << "        108       G4cout << k << "   " << theta2k << "     "
109              << std::sin(tmp) * std::sin(tmp)     109              << std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result
110              << "      " << sum << G4endl;        110              << "      " << sum << G4endl;
111     }                                             111     }
112   }                                               112   }
113   result = 2 * (cof1 + cof2) * (cof1 + cof2) *    113   result = 2 * (cof1 + cof2) * (cof1 + cof2) * sum / energy;
114   result *= dump * (-1 + dump + 2 * fPlateNumb    114   result *= dump * (-1 + dump + 2 * fPlateNumber);
115                                                   115 
116   return result;                                  116   return result;
117 }                                                 117 }
118                                                   118 
119 //////////////////////////////////////////////    119 ///////////////////////////////////////////////////////////////////////////
120 // Approximation for radiator interference fac    120 // Approximation for radiator interference factor for the case of
121 // fully Regular radiator. The plate and gas g    121 // fully Regular radiator. The plate and gas gap thicknesses are fixed.
122 // The mean values of the plate and gas gap th    122 // The mean values of the plate and gas gap thicknesses
123 // are supposed to be about XTR formation zone    123 // are supposed to be about XTR formation zones but much less than
124 // mean absorption length of XTR photons in co    124 // mean absorption length of XTR photons in corresponding material.
125 G4double G4XTRRegularRadModel::GetStackFactor(    125 G4double G4XTRRegularRadModel::GetStackFactor(G4double energy, G4double gamma,
126                                                   126                                               G4double varAngle)
127 {                                                 127 {
128   G4double aZa = fPlateThick / GetPlateFormati    128   G4double aZa = fPlateThick / GetPlateFormationZone(energy, gamma, varAngle);
129   G4double bZb = fGasThick / GetGasFormationZo    129   G4double bZb = fGasThick / GetGasFormationZone(energy, gamma, varAngle);
130                                                   130 
131   G4double aMa = fPlateThick * GetPlateLinearP    131   G4double aMa = fPlateThick * GetPlateLinearPhotoAbs(energy);
132   G4double bMb = fGasThick * GetGasLinearPhoto    132   G4double bMb = fGasThick * GetGasLinearPhotoAbs(energy);
133                                                   133 
134   G4double Qa = std::exp(-aMa);                   134   G4double Qa = std::exp(-aMa);
135   G4double Qb = std::exp(-bMb);                   135   G4double Qb = std::exp(-bMb);
136   G4double Q  = Qa * Qb;                          136   G4double Q  = Qa * Qb;
137                                                   137 
138   G4complex Ha(std::exp(-0.5 * aMa) * std::cos    138   G4complex Ha(std::exp(-0.5 * aMa) * std::cos(aZa),
139                -std::exp(-0.5 * aMa) * std::si    139                -std::exp(-0.5 * aMa) * std::sin(aZa));
140                                                   140 
141   G4complex Hb(std::exp(-0.5 * bMb) * std::cos    141   G4complex Hb(std::exp(-0.5 * bMb) * std::cos(bZb),
142                -std::exp(-0.5 * bMb) * std::si    142                -std::exp(-0.5 * bMb) * std::sin(bZb));
143                                                   143 
144   G4complex H  = Ha * Hb;                         144   G4complex H  = Ha * Hb;
145   G4complex Hs = std::conj(H);                    145   G4complex Hs = std::conj(H);
146                                                   146 
147   G4complex F2 = (1.0 - Ha) * (Qa - Ha) * Hb *    147   G4complex F2 = (1.0 - Ha) * (Qa - Ha) * Hb * (1.0 - Hs) * (Q - Hs);
148   F2 *= std::pow(Q, G4double(fPlateNumber)) -     148   F2 *= std::pow(Q, G4double(fPlateNumber)) - std::pow(H, fPlateNumber);
149                                                   149 
150   G4double result = (1. - std::pow(Q, G4double    150   G4double result = (1. - std::pow(Q, G4double(fPlateNumber))) / (1. - Q);
151   result *= (1. - Qa) * (1. + Qa - 2. * std::s    151   result *= (1. - Qa) * (1. + Qa - 2. * std::sqrt(Qa) * std::cos(aZa));
152   result /= (1. - std::sqrt(Q)) * (1. - std::s    152   result /= (1. - std::sqrt(Q)) * (1. - std::sqrt(Q)) +
153             4. * std::sqrt(Q) * std::sin(0.5 *    153             4. * std::sqrt(Q) * std::sin(0.5 * (aZa + bZb)) *
154               std::sin(0.5 * (aZa + bZb));        154               std::sin(0.5 * (aZa + bZb));
155                                                   155 
156   G4double I2 = 1.;                               156   G4double I2 = 1.;
157   I2 /= (1. - std::sqrt(Q)) * (1. - std::sqrt(    157   I2 /= (1. - std::sqrt(Q)) * (1. - std::sqrt(Q)) +
158         4. * std::sqrt(Q) * std::sin(0.5 * (aZ    158         4. * std::sqrt(Q) * std::sin(0.5 * (aZa + bZb)) *
159           std::sin(0.5 * (aZa + bZb));            159           std::sin(0.5 * (aZa + bZb));
160                                                   160 
161   I2 /= Q * ((std::sqrt(Q) - std::cos(aZa + bZ    161   I2 /= Q * ((std::sqrt(Q) - std::cos(aZa + bZb)) *
162                (std::sqrt(Q) - std::cos(aZa +     162                (std::sqrt(Q) - std::cos(aZa + bZb)) +
163              std::sin(aZa + bZb) * std::sin(aZ    163              std::sin(aZa + bZb) * std::sin(aZa + bZb));
164                                                   164 
165   G4complex stack = 2. * I2 * F2;                 165   G4complex stack = 2. * I2 * F2;
166   stack += result;                                166   stack += result;
167   stack *= OneInterfaceXTRdEdx(energy, gamma,     167   stack *= OneInterfaceXTRdEdx(energy, gamma, varAngle);
168                                                   168 
169   return std::real(stack);                        169   return std::real(stack);
170 }                                                 170 }
171                                                   171