Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4XTRRegularRadModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4XTRRegularRadModel.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4XTRRegularRadModel.cc (Version 10.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
 26                                                    27 
 27 #include "G4XTRRegularRadModel.hh"             <<  28 #include <complex>
 28                                                    29 
                                                   >>  30 #include "G4XTRRegularRadModel.hh"
 29 #include "G4PhysicalConstants.hh"                  31 #include "G4PhysicalConstants.hh"
                                                   >>  32 #include "Randomize.hh"
                                                   >>  33 
                                                   >>  34 #include "G4Gamma.hh"
                                                   >>  35 using namespace std;
 30                                                    36 
 31 //////////////////////////////////////////////     37 ////////////////////////////////////////////////////////////////////////////
                                                   >>  38 //
 32 // Constructor, destructor                         39 // Constructor, destructor
 33 G4XTRRegularRadModel::G4XTRRegularRadModel(G4L <<  40 
 34                                            G4M <<  41 G4XTRRegularRadModel::G4XTRRegularRadModel(G4LogicalVolume *anEnvelope,
 35                                            G4M <<  42                                          G4Material* foilMat,G4Material* gasMat,
 36                                            G4d <<  43                                          G4double a, G4double b, G4int n,
 37                                            con <<  44                                          const G4String& processName) :
 38   : G4VXTRenergyLoss(anEnvelope, foilMat, gasM <<  45   G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)  
 39 {                                                  46 {
 40   G4cout << " XTR Regular discrete radiator mo <<  47   G4cout<<" XTR Regular discrete radiator model is called"<<G4endl ;
 41                                                    48 
 42   fExitFlux = true;                                49   fExitFlux = true;
                                                   >>  50 
                                                   >>  51   // Build energy and angular integral spectra of X-ray TR photons from
                                                   >>  52   // a radiator
                                                   >>  53 
                                                   >>  54   // BuildTable() ;
 43 }                                                  55 }
 44                                                    56 
 45 //////////////////////////////////////////////     57 ///////////////////////////////////////////////////////////////////////////
 46 G4XTRRegularRadModel::~G4XTRRegularRadModel()  << 
 47                                                    58 
 48 ////////////////////////////////////////////// <<  59 G4XTRRegularRadModel::~G4XTRRegularRadModel()
 49 void G4XTRRegularRadModel::ProcessDescription( << 
 50 {                                                  60 {
 51   out << "Describes X-ray transition radiation <<  61   ;
 52          "plates\n"                            << 
 53          "fixed.\n";                           << 
 54 }                                                  62 }
 55                                                    63 
 56 //////////////////////////////////////////////     64 ///////////////////////////////////////////////////////////////////////////
                                                   >>  65 //
                                                   >>  66 //
                                                   >>  67 
 57 G4double G4XTRRegularRadModel::SpectralXTRdEdx     68 G4double G4XTRRegularRadModel::SpectralXTRdEdx(G4double energy)
 58 {                                                  69 {
 59   static constexpr G4double cofPHC = 4. * pi * <<  70   G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k; 
 60   G4double result, sum = 0., tmp, cof1, cof2,  <<  71     G4double aMa, bMb ,sigma, dump;
 61   G4double aMa, bMb, sigma, dump;              << 
 62   G4int k, kMax, kMin;                             72   G4int k, kMax, kMin;
 63                                                    73 
 64   aMa   = fPlateThick * GetPlateLinearPhotoAbs <<  74   aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
 65   bMb   = fGasThick * GetGasLinearPhotoAbs(ene <<  75   bMb = fGasThick*GetGasLinearPhotoAbs(energy);
 66   sigma = 0.5 * (aMa + bMb);                   <<  76   sigma = 0.5*(aMa + bMb);
 67   dump  = std::exp(-fPlateNumber * sigma);     <<  77   dump = std::exp(-fPlateNumber*sigma);
 68   if(verboseLevel > 2)                         <<  78   if(verboseLevel > 2)  G4cout<<" dump = "<<dump<<G4endl;  
 69     G4cout << " dump = " << dump << G4endl;    <<  79   cofPHC  = 4*pi*hbarc;
 70   tmp  = (fSigma1 - fSigma2) / cofPHC / energy <<  80   tmp     = (fSigma1 - fSigma2)/cofPHC/energy;  
 71   cof1 = fPlateThick * tmp;                    <<  81   cof1    = fPlateThick*tmp;
 72   cof2 = fGasThick * tmp;                      <<  82   cof2    = fGasThick*tmp;
 73                                                    83 
 74   cofMin = energy * (fPlateThick + fGasThick)  <<  84   cofMin  =  energy*(fPlateThick + fGasThick)/fGamma/fGamma;
 75   cofMin += (fPlateThick * fSigma1 + fGasThick <<  85   cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
 76   cofMin /= cofPHC;                                86   cofMin /= cofPHC;
 77                                                    87 
 78   theta2 = cofPHC / (energy * (fPlateThick + f <<  88   theta2 = cofPHC/(energy*(fPlateThick + fGasThick));
                                                   >>  89 
                                                   >>  90   //  if (fGamma < 1200) kMin = G4int(cofMin);  // 1200 ?
                                                   >>  91   // else               kMin = 1;
                                                   >>  92 
 79                                                    93 
 80   kMin = G4int(cofMin);                            94   kMin = G4int(cofMin);
 81   if(cofMin > kMin)                            <<  95   if (cofMin > kMin) kMin++;
 82     kMin++;                                    <<  96 
                                                   >>  97   // tmp  = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
                                                   >>  98   // tmp /= cofPHC;
                                                   >>  99   // kMax = G4int(tmp);
                                                   >> 100   // if(kMax < 0) kMax = 0;
                                                   >> 101   // kMax += kMin;
                                                   >> 102   
                                                   >> 103 
                                                   >> 104   kMax = kMin + 49; //  19; // kMin + G4int(tmp);
 83                                                   105 
 84   kMax = kMin + 49;                            << 106   // tmp /= fGamma;
                                                   >> 107   // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
 85                                                   108 
 86   if(verboseLevel > 2)                            109   if(verboseLevel > 2)
 87   {                                            << 110   {    
 88     G4cout << cof1 << "     " << cof2 << "     << 111     G4cout<<cof1<<"     "<<cof2<<"        "<<cofMin<<G4endl;
 89     G4cout << "kMin = " << kMin << ";    kMax  << 112     G4cout<<"kMin = "<<kMin<<";    kMax = "<<kMax<<G4endl;
 90   }                                               113   }
 91   for(k = kMin; k <= kMax; ++k)                << 114   for( k = kMin; k <= kMax; k++ )
 92   {                                               115   {
 93     tmp    = pi * fPlateThick * (k + cof2) / ( << 116     tmp    = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
 94     result = (k - cof1) * (k - cof1) * (k + co << 117     result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
 95     if(k == kMin && kMin == G4int(cofMin))     << 118     // tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
                                                   >> 119     if( k == kMin && kMin == G4int(cofMin) )
 96     {                                             120     {
 97       sum +=                                   << 121       sum   += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
 98         0.5 * std::sin(tmp) * std::sin(tmp) *  << 
 99     }                                             122     }
100     else                                          123     else
101     {                                             124     {
102       sum += std::sin(tmp) * std::sin(tmp) * s << 125       sum   += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
103     }                                             126     }
104     theta2k = std::sqrt(theta2 * std::abs(k -  << 127     theta2k = std::sqrt(theta2*std::abs(k-cofMin));
105                                                   128 
106     if(verboseLevel > 2)                          129     if(verboseLevel > 2)
107     {                                          << 130     {    
108       G4cout << k << "   " << theta2k << "     << 131       // G4cout<<"k = "<<k<<"; sqrt(theta2k) = "<<theta2k<<"; tmp = "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
109              << std::sin(tmp) * std::sin(tmp)  << 132       //     <<";    sum = "<<sum<<G4endl;  
110              << "      " << sum << G4endl;     << 133       G4cout<<k<<"   "<<theta2k<<"     "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
111     }                                          << 134               <<"      "<<sum<<G4endl;  
                                                   >> 135     }  
112   }                                               136   }
113   result = 2 * (cof1 + cof2) * (cof1 + cof2) * << 137   result = 2*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
114   result *= dump * (-1 + dump + 2 * fPlateNumb << 138   // result *= ( 1 - std::exp(-0.5*fPlateNumber*sigma) )/( 1 - std::exp(-0.5*sigma) );  
115                                                << 139   // fPlateNumber;
                                                   >> 140   result *= dump*( -1 + dump + 2*fPlateNumber ); 
                                                   >> 141   /*  
                                                   >> 142   fEnergy = energy;
                                                   >> 143   //  G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
                                                   >> 144   G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
                                                   >> 145  
                                                   >> 146   tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
                                                   >> 147                              0.0,0.3*fMaxThetaTR) +
                                                   >> 148       integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
                                                   >> 149                              0.3*fMaxThetaTR,0.6*fMaxThetaTR) +         
                                                   >> 150       integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
                                                   >> 151                              0.6*fMaxThetaTR,fMaxThetaTR) ;
                                                   >> 152   result += tmp;
                                                   >> 153   */
116   return result;                                  154   return result;
117 }                                                 155 }
118                                                   156 
                                                   >> 157 
                                                   >> 158 
119 //////////////////////////////////////////////    159 ///////////////////////////////////////////////////////////////////////////
                                                   >> 160 //
120 // Approximation for radiator interference fac    161 // Approximation for radiator interference factor for the case of
121 // fully Regular radiator. The plate and gas g << 162 // fully Regular radiator. The plate and gas gap thicknesses are fixed .
122 // The mean values of the plate and gas gap th << 163 // The mean values of the plate and gas gap thicknesses 
123 // are supposed to be about XTR formation zone << 164 // are supposed to be about XTR formation zones but much less than 
124 // mean absorption length of XTR photons in co << 165 // mean absorption length of XTR photons in coresponding material.
125 G4double G4XTRRegularRadModel::GetStackFactor( << 166 
126                                                << 167 G4double 
                                                   >> 168 G4XTRRegularRadModel::GetStackFactor( G4double energy, 
                                                   >> 169                                          G4double gamma, G4double varAngle )
127 {                                                 170 {
128   G4double aZa = fPlateThick / GetPlateFormati << 171   G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, I2 ;
129   G4double bZb = fGasThick / GetGasFormationZo << 172   
                                                   >> 173   aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle) ;
                                                   >> 174   bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle) ;
130                                                   175 
131   G4double aMa = fPlateThick * GetPlateLinearP << 176   aMa = fPlateThick*GetPlateLinearPhotoAbs(energy) ;
132   G4double bMb = fGasThick * GetGasLinearPhoto << 177   bMb = fGasThick*GetGasLinearPhotoAbs(energy) ;
133                                                   178 
134   G4double Qa = std::exp(-aMa);                << 179   Qa = std::exp(-aMa) ;
135   G4double Qb = std::exp(-bMb);                << 180   Qb = std::exp(-bMb) ;
136   G4double Q  = Qa * Qb;                       << 181   Q  = Qa*Qb ;
137                                                   182 
138   G4complex Ha(std::exp(-0.5 * aMa) * std::cos << 183   //  G4complex Ca(1.0+0.5*fPlateThick*Ma,fPlateThick/Za) ; 
139                -std::exp(-0.5 * aMa) * std::si << 184   //  G4complex Cb(1.0+0.5*fGasThick*Mb,fGasThick/Zb) ; 
140                                                   185 
141   G4complex Hb(std::exp(-0.5 * bMb) * std::cos << 186   G4complex Ha( std::exp(-0.5*aMa)*std::cos(aZa),
142                -std::exp(-0.5 * bMb) * std::si << 187                -std::exp(-0.5*aMa)*std::sin(aZa)   ) ; 
                                                   >> 188  
                                                   >> 189   G4complex Hb( std::exp(-0.5*bMb)*std::cos(bZb),
                                                   >> 190                -std::exp(-0.5*bMb)*std::sin(bZb)    ) ;
143                                                   191 
144   G4complex H  = Ha * Hb;                      << 192   G4complex H  = Ha*Hb ;
145   G4complex Hs = std::conj(H);                 << 
146                                                   193 
147   G4complex F2 = (1.0 - Ha) * (Qa - Ha) * Hb * << 194   G4complex Hs = std::conj(H) ;
148   F2 *= std::pow(Q, G4double(fPlateNumber)) -  << 
149                                                   195 
150   G4double result = (1. - std::pow(Q, G4double << 196   //  G4complex F1 = ( 0.5*(1+Qa)*(1+H) - Ha - Qa*Hb )/(1-H) ;
151   result *= (1. - Qa) * (1. + Qa - 2. * std::s << 
152   result /= (1. - std::sqrt(Q)) * (1. - std::s << 
153             4. * std::sqrt(Q) * std::sin(0.5 * << 
154               std::sin(0.5 * (aZa + bZb));     << 
155                                                   197 
156   G4double I2 = 1.;                            << 198   G4complex F2 = (1.0-Ha)*(Qa-Ha)*Hb*(1.0-Hs)*(Q-Hs) ;
157   I2 /= (1. - std::sqrt(Q)) * (1. - std::sqrt( << 
158         4. * std::sqrt(Q) * std::sin(0.5 * (aZ << 
159           std::sin(0.5 * (aZa + bZb));         << 
160                                                   199 
161   I2 /= Q * ((std::sqrt(Q) - std::cos(aZa + bZ << 200   F2          *= std::pow(Q,G4double(fPlateNumber)) - std::pow(H,fPlateNumber) ;
162                (std::sqrt(Q) - std::cos(aZa +  << 
163              std::sin(aZa + bZb) * std::sin(aZ << 
164                                                   201 
165   G4complex stack = 2. * I2 * F2;              << 202   result       = ( 1 - std::pow(Q,G4double(fPlateNumber)) )/( 1 - Q ) ;
166   stack += result;                             << 
167   stack *= OneInterfaceXTRdEdx(energy, gamma,  << 
168                                                   203 
169   return std::real(stack);                     << 204   result      *= (1 - Qa)*(1 + Qa - 2*std::sqrt(Qa)*std::cos(aZa)) ;
                                                   >> 205 
                                                   >> 206   result      /= (1 - std::sqrt(Q))*(1 - std::sqrt(Q)) + 
                                                   >> 207                   4*std::sqrt(Q)*std::sin(0.5*(aZa+bZb))*std::sin(0.5*(aZa+bZb)) ;
                                                   >> 208 
                                                   >> 209   I2           = 1.; // 2.0*std::real(F2) ;
                                                   >> 210 
                                                   >> 211   I2           /= (1 - std::sqrt(Q))*(1 - std::sqrt(Q)) + 
                                                   >> 212                   4*std::sqrt(Q)*std::sin(0.5*(aZa+bZb))*std::sin(0.5*(aZa+bZb)) ;
                                                   >> 213 
                                                   >> 214   I2           /= Q*( (std::sqrt(Q)-std::cos(aZa+bZb))*(std::sqrt(Q)-std::cos(aZa+bZb)) + 
                                                   >> 215                       std::sin(aZa+bZb)*std::sin(aZa+bZb)   ) ;
                                                   >> 216 
                                                   >> 217   G4complex stack  = 2.*I2*F2;
                                                   >> 218             stack += result;
                                                   >> 219             stack *= OneInterfaceXTRdEdx(energy,gamma,varAngle);
                                                   >> 220 
                                                   >> 221       // result       += I2 ;
                                                   >> 222   result = std::real(stack);
                                                   >> 223 
                                                   >> 224   return      result ;
170 }                                                 225 }
                                                   >> 226 
                                                   >> 227 
                                                   >> 228 //
                                                   >> 229 //
                                                   >> 230 ////////////////////////////////////////////////////////////////////////////
                                                   >> 231 
                                                   >> 232 
                                                   >> 233 
                                                   >> 234 
                                                   >> 235 
                                                   >> 236 
                                                   >> 237 
                                                   >> 238 
171                                                   239