Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4XTRGaussRadModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4XTRGaussRadModel.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4XTRGaussRadModel.cc (Version 3.1)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // 19.04.24 V. Grichine, first version            
 27 //                                                
 28                                                   
 29 #include "G4XTRGaussRadModel.hh"                  
 30 #include "G4PhysicalConstants.hh"                 
 31                                                   
 32 #include "G4Material.hh"                          
 33 #include "G4Element.hh"                           
 34 #include "G4NistManager.hh"                       
 35                                                   
 36 using namespace std;                              
 37 using namespace CLHEP;                            
 38                                                   
 39 //////////////////////////////////////////////    
 40 // Constructor, destructor                        
 41                                                   
 42 G4XTRGaussRadModel::G4XTRGaussRadModel(           
 43   G4LogicalVolume* anEnvelope,   G4double alph    
 44   G4double aa, G4double b, G4int n, const G4St    
 45   : G4VXTRenergyLoss(anEnvelope, foilMat, gasM    
 46 {                                                 
 47   if( verboseLevel > 0 )                          
 48     G4cout << "G4XTRGaussRadModel EM process i    
 49            << G4endl;                             
 50                                                   
 51   fAlphaPlate = alphaPlate; // ~40                
 52   fAlphaGas   = alphaGas;   // ~10                
 53   fExitFlux   = true;       // XTR photons are    
 54 }                                                 
 55                                                   
 56 //////////////////////////////////////////////    
 57                                                   
 58 G4XTRGaussRadModel::~G4XTRGaussRadModel() = de    
 59                                                   
 60 //////////////////////////////////////////////    
 61                                                   
 62 void G4XTRGaussRadModel::ProcessDescription(st    
 63 {                                                 
 64   out << "Simulation of forward X-ray transiti    
 65          "relativistic charged particles cross    
 66          "two materials.\n";                      
 67 }                                                 
 68                                                   
 69 //////////////////////////////////////////////    
 70                                                   
 71 G4double G4XTRGaussRadModel::SpectralXTRdEdx(G    
 72 {                                                 
 73   static constexpr G4double cofPHC = 4. * pi *    
 74   G4double result, sum = 0., tmp, cof1, cof2,     
 75   G4double aMa, bMb, sigma, dump;                 
 76   G4int k, kMax, kMin;                            
 77                                                   
 78   aMa   = fPlateThick * GetPlateLinearPhotoAbs    
 79   bMb   = fGasThick * GetGasLinearPhotoAbs(ene    
 80   sigma = 0.5 * (aMa + bMb);                      
 81   dump  = std::exp(-fPlateNumber * sigma);        
 82   if(verboseLevel > 2)                            
 83     G4cout << " dump = " << dump << G4endl;       
 84   tmp  = (fSigma1 - fSigma2) / cofPHC / energy    
 85   cof1 = fPlateThick * tmp;                       
 86   cof2 = fGasThick * tmp;                         
 87                                                   
 88   cofMin = energy * (fPlateThick + fGasThick)     
 89   cofMin += (fPlateThick * fSigma1 + fGasThick    
 90   cofMin /= cofPHC;                               
 91                                                   
 92   theta2 = cofPHC / (energy * (fPlateThick + f    
 93                                                   
 94   kMin = G4int(cofMin);                           
 95   if(cofMin > kMin)                               
 96     kMin++;                                       
 97                                                   
 98   kMax = kMin + 200; // 99; // 49; //             
 99                                                   
100   if(verboseLevel > 2)                            
101   {                                               
102     G4cout << cof1 << "     " << cof2 << "        
103     G4cout << "kMin = " << kMin << ";    kMax     
104   }                                               
105   for(k = kMin; k <= kMax; ++k)                   
106   {                                               
107     tmp    = pi * fPlateThick * (k + cof2) / (    
108     result = (k - cof1) * (k - cof1) * (k + co    
109     if(k == kMin && kMin == G4int(cofMin))        
110     {                                             
111       sum +=                                      
112         0.5 * std::sin(tmp) * std::sin(tmp) *     
113     }                                             
114     else                                          
115     {                                             
116       sum += std::sin(tmp) * std::sin(tmp) * s    
117     }                                             
118     theta2k = std::sqrt(theta2 * std::abs(k -     
119                                                   
120     if(verboseLevel > 2)                          
121     {                                             
122       G4cout << k << "   " << theta2k << "        
123              << std::sin(tmp) * std::sin(tmp)     
124              << "      " << sum << G4endl;        
125     }                                             
126   }                                               
127   result = 2 * (cof1 + cof2) * (cof1 + cof2) *    
128   result *= dump * (-1 + dump + 2 * fPlateNumb    
129   return result;                                  
130 }                                                 
131                                                   
132 //////////////////////////////////////////////    
133 //                                                
134 // Approximation for radiator interference fac    
135 // Gauss-distributed regular radiator. The pla    
136 // are Gauss distributed with RMS                 
137 // sa and sb for plate and gas, respectively.     
138 // The mean values of the plate and gas gap th    
139 // are supposed to be about XTR formation zone    
140 // The XTR photons are moved to the end of rad    
141                                                   
142                                                   
143 G4double G4XTRGaussRadModel::GetStackFactor(G4    
144                                                   
145                                                   
146 {                                                 
147   G4double result(0.);                            
148                                                   
149   G4double Ma, Mb, aMa, bMb, sigma;               
150                                                   
151   G4double sa = fPlateThick/fAlphaPlate;          
152   G4double sb = fGasThick/fAlphaGas;              
153                                                   
154   Ma =  GetPlateLinearPhotoAbs(energy);           
155   aMa = fPlateThick * Ma;                         
156   Mb = GetGasLinearPhotoAbs(energy);              
157   bMb   = fGasThick * Mb;                         
158   sigma = aMa + bMb; // m1*t1+m2*t2 dimensionl    
159   G4double nn = G4double( fPlateNumber );         
160                                                   
161   // Gauss fluctuation of foil and gas gaps ac    
162   // RMS = sa = a/fAlphaPlate and RMS = sb = b    
163                                                   
164   G4complex med(0.,1.);                           
165   G4complex Z1   = GetPlateComplexFZ( energy,     
166   G4complex por1 = -0.5*med*fPlateThick/Z1 - 0    
167                                                   
168   G4complex Z2   = GetGasComplexFZ( energy, ga    
169   G4complex por2 = -0.5*med*fGasThick/Z2 - 0.1    
170                                                   
171   G4complex npor = (por1+por2)*nn;                
172                                                   
173   G4complex Ha = exp(por1);                       
174   G4complex Hb = exp(por2);                       
175                                                   
176   G4complex H  = Ha*Hb;                           
177   G4complex Hn = exp(npor);                       
178                                                   
179   G4complex A  = ( 1.0 - Ha ) * ( 1.0 - Hb ) /    
180   G4complex B1 = ( 1.0 - Ha ) * ( 1.0 - Ha ) *    
181                                                   
182   G4complex R  = B1*( exp(-sigma*nn) - Hn )/(     
183                                                   
184   R += A * ( 1 - exp(-sigma*nn) ) / ( 1. - exp    
185                                                   
186   R *= OneInterfaceXTRdEdx(energy, gamma, varA    
187                                                   
188   result      = 2.0 * std::real(R);               
189                                                   
190   return result;                                  
191 }                                                 
192