Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4TransparentRegXTRadiator.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4TransparentRegXTRadiator.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4TransparentRegXTRadiator.cc (Version 9.1.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4TransparentRegXTRadiator.cc,v 1.11 2007/09/29 17:49:34 vnivanch Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-01-patch-01 $
                                                   >>  29 //
                                                   >>  30 
                                                   >>  31 #include <complex>
 26                                                    32 
 27 #include "G4TransparentRegXTRadiator.hh"           33 #include "G4TransparentRegXTRadiator.hh"
                                                   >>  34 #include "Randomize.hh"
                                                   >>  35 #include "G4Integrator.hh"
                                                   >>  36 #include "G4Gamma.hh"
 28                                                    37 
 29 #include "G4PhysicalConstants.hh"              <<  38 using namespace std;
 30                                                    39 
 31 //////////////////////////////////////////////     40 ////////////////////////////////////////////////////////////////////////////
                                                   >>  41 //
 32 // Constructor, destructor                         42 // Constructor, destructor
 33 G4TransparentRegXTRadiator::G4TransparentRegXT <<  43 
 34   G4LogicalVolume* anEnvelope, G4Material* foi <<  44 G4TransparentRegXTRadiator::G4TransparentRegXTRadiator(G4LogicalVolume *anEnvelope,
 35   G4double a, G4double b, G4int n, const G4Str <<  45            G4Material* foilMat,G4Material* gasMat, 
 36   : G4VXTRenergyLoss(anEnvelope, foilMat, gasM <<  46                                          G4double a, G4double b, G4int n,
                                                   >>  47                                          const G4String& processName) :
                                                   >>  48   G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
 37 {                                                  49 {
 38   if(verboseLevel > 0)                             50   if(verboseLevel > 0)
 39     G4cout << "Regular transparent X-ray TR  r <<  51     G4cout<<"Regular transparent X-ray TR  radiator EM process is called"<<G4endl;
 40            << G4endl;                          << 
 41                                                    52 
 42   // Build energy and angular integral spectra     53   // Build energy and angular integral spectra of X-ray TR photons from
 43   // a radiator                                    54   // a radiator
 44                                                    55 
 45   fAlphaPlate = 10000;                             56   fAlphaPlate = 10000;
 46   fAlphaGas   = 1000;                              57   fAlphaGas   = 1000;
                                                   >>  58 
                                                   >>  59   // BuildTable();
 47 }                                                  60 }
 48                                                    61 
 49 //////////////////////////////////////////////     62 ///////////////////////////////////////////////////////////////////////////
 50 G4TransparentRegXTRadiator::~G4TransparentRegX << 
 51                                                    63 
 52 ////////////////////////////////////////////// <<  64 G4TransparentRegXTRadiator::~G4TransparentRegXTRadiator()
 53 void G4TransparentRegXTRadiator::ProcessDescri << 
 54 {                                                  65 {
 55   out << "Simulation of forward X-ray transiti <<  66   ;
 56          "relativistic charged particles cross << 
 57          "two materials.\n";                   << 
 58 }                                                  67 }
 59                                                    68 
 60 //////////////////////////////////////////////     69 ///////////////////////////////////////////////////////////////////////////
                                                   >>  70 //
                                                   >>  71 //
                                                   >>  72 
 61 G4double G4TransparentRegXTRadiator::SpectralX     73 G4double G4TransparentRegXTRadiator::SpectralXTRdEdx(G4double energy)
 62 {                                                  74 {
 63   G4double result, sum = 0., tmp, cof1, cof2,  <<  75   G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC,aMa, bMb, sigma;
 64   G4int k, kMax, kMin;                             76   G4int k, kMax, kMin;
 65                                                    77 
 66   cofPHC = 4. * pi * hbarc;                    <<  78   aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
 67   tmp    = (fSigma1 - fSigma2) / cofPHC / ener <<  79   bMb = fGasThick*GetGasLinearPhotoAbs(energy);
 68   cof1   = fPlateThick * tmp;                  <<  80   sigma = aMa + bMb;
 69   cof2   = fGasThick * tmp;                    <<  81    
                                                   >>  82   cofPHC  = 4*pi*hbarc;
                                                   >>  83   tmp     = (fSigma1 - fSigma2)/cofPHC/energy;  
                                                   >>  84   cof1    = fPlateThick*tmp;
                                                   >>  85   cof2    = fGasThick*tmp;
 70                                                    86 
 71   cofMin = energy * (fPlateThick + fGasThick)  <<  87   cofMin  =  energy*(fPlateThick + fGasThick)/fGamma/fGamma;
 72   cofMin += (fPlateThick * fSigma1 + fGasThick <<  88   cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
 73   cofMin /= cofPHC;                                89   cofMin /= cofPHC;
 74                                                    90 
 75   theta2 = cofPHC / (energy * (fPlateThick + f <<  91   //  if (fGamma < 1200) kMin = G4int(cofMin);  // 1200 ?
                                                   >>  92   // else               kMin = 1;
                                                   >>  93 
 76                                                    94 
 77   kMin = G4int(cofMin);                            95   kMin = G4int(cofMin);
 78   if(cofMin > kMin)                            <<  96   if (cofMin > kMin) kMin++;
 79     kMin++;                                    << 
 80                                                    97 
 81   kMax = kMin + 49;                            <<  98   // tmp  = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
                                                   >>  99   // tmp /= cofPHC;
                                                   >> 100   // kMax = G4int(tmp);
                                                   >> 101   // if(kMax < 0) kMax = 0;
                                                   >> 102   // kMax += kMin;
                                                   >> 103   
                                                   >> 104 
                                                   >> 105   kMax = kMin + 19; //  9; // kMin + G4int(tmp);
                                                   >> 106 
                                                   >> 107   // tmp /= fGamma;
                                                   >> 108   // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
                                                   >> 109   // G4cout<<"kMin = "<<kMin<<";    kMax = "<<kMax<<G4endl;
 82                                                   110 
 83   if(verboseLevel > 2)                         << 111   for( k = kMin; k <= kMax; k++ )
 84   {                                               112   {
 85     G4cout << cof1 << "     " << cof2 << "     << 113     tmp    = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
 86     G4cout << "kMin = " << kMin << ";    kMax  << 114     result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
 87   }                                            << 115     // tmp = sin(tmp)*sin(tmp)*abs(k-cofMin)/result;
 88   for(k = kMin; k <= kMax; ++k)                << 116     if( k == kMin && kMin == G4int(cofMin) )
 89   {                                            << 
 90     tmp    = pi * fPlateThick * (k + cof2) / ( << 
 91     result = (k - cof1) * (k - cof1) * (k + co << 
 92     if(k == kMin && kMin == G4int(cofMin))     << 
 93     {                                             117     {
 94       sum +=                                   << 118       sum   += 0.5*sin(tmp)*sin(tmp)*abs(k-cofMin)/result;
 95         0.5 * std::sin(tmp) * std::sin(tmp) *  << 
 96     }                                             119     }
 97     else                                          120     else
 98     {                                             121     {
 99       sum += std::sin(tmp) * std::sin(tmp) * s << 122       sum   += sin(tmp)*sin(tmp)*abs(k-cofMin)/result;
100     }                                             123     }
101     theta2k = std::sqrt(theta2 * std::abs(k -  << 
102                                                << 
103     if(verboseLevel > 2)                          124     if(verboseLevel > 2)
104     {                                          << 125     {    
105       G4cout << k << "   " << theta2k << "     << 126       G4cout<<"k = "<<k<<"; tmp = "<<sin(tmp)*sin(tmp)*abs(k-cofMin)/result
106              << std::sin(tmp) * std::sin(tmp)  << 127               <<";    sum = "<<sum<<G4endl;  
107              << "      " << sum << G4endl;     << 128     }  
108     }                                          << 
109   }                                               129   }
110   result = 4. * (cof1 + cof2) * (cof1 + cof2)  << 130   result = 4*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
111   result *= fPlateNumber;                      << 131   // result *= ( 1 - exp(-0.5*fPlateNumber*sigma) )/( 1 - exp(-0.5*sigma) );  
112                                                << 132   // fPlateNumber;
                                                   >> 133   result *= fPlateNumber; // *exp(-0.5*fPlateNumber*sigma); 
                                                   >> 134                              // +1-exp(-0.5*fPlateNumber*sigma); 
                                                   >> 135   /*  
                                                   >> 136   fEnergy = energy;
                                                   >> 137   //  G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
                                                   >> 138   G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
                                                   >> 139  
                                                   >> 140   tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
                                                   >> 141                              0.0,0.3*fMaxThetaTR) +
                                                   >> 142       integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
                                                   >> 143                              0.3*fMaxThetaTR,0.6*fMaxThetaTR) +         
                                                   >> 144       integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
                                                   >> 145                              0.6*fMaxThetaTR,fMaxThetaTR) ;
                                                   >> 146   result += tmp;
                                                   >> 147   */
113   return result;                                  148   return result;
114 }                                                 149 }
115                                                   150 
                                                   >> 151 
116 //////////////////////////////////////////////    152 ///////////////////////////////////////////////////////////////////////////
                                                   >> 153 //
117 // Approximation for radiator interference fac    154 // Approximation for radiator interference factor for the case of
118 // fully Regular radiator. The plate and gas g << 155 // fully Regular radiator. The plate and gas gap thicknesses are fixed .
119 // The mean values of the plate and gas gap th << 156 // The mean values of the plate and gas gap thicknesses 
120 // are supposed to be about XTR formation zone << 157 // are supposed to be about XTR formation zones but much less than 
121 // mean absorption length of XTR photons in co << 158 // mean absorption length of XTR photons in coresponding material.
122 G4double G4TransparentRegXTRadiator::GetStackF << 159 
123                                                << 160 G4double 
124                                                << 161 G4TransparentRegXTRadiator::GetStackFactor( G4double energy, 
                                                   >> 162                                          G4double gamma, G4double varAngle )
125 {                                                 163 {
126   G4double result, Qa, Qb, Q, aZa, bZb, aMa, b << 164   /*
127                                                << 165   G4double result, Za, Zb, Ma, Mb, sigma;
128   aZa   = fPlateThick / GetPlateFormationZone( << 166   
129   bZb   = fGasThick / GetGasFormationZone(ener << 167   Za = GetPlateFormationZone(energy,gamma,varAngle);
130   aMa   = fPlateThick * GetPlateLinearPhotoAbs << 168   Zb = GetGasFormationZone(energy,gamma,varAngle);
131   bMb   = fGasThick * GetGasLinearPhotoAbs(ene << 169   Ma = GetPlateLinearPhotoAbs(energy);
132   sigma = aMa * fPlateThick + bMb * fGasThick; << 170   Mb = GetGasLinearPhotoAbs(energy);
133   Qa    = std::exp(-0.5 * aMa);                << 171   sigma = Ma*fPlateThick + Mb*fGasThick;
134   Qb    = std::exp(-0.5 * bMb);                << 172 
135   Q     = Qa * Qb;                             << 173   G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate); 
136                                                << 174   G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas); 
137   G4complex Ha(Qa * std::cos(aZa), -Qa * std:: << 175 
138   G4complex Hb(Qb * std::cos(bZb), -Qb * std:: << 176   G4complex Ha = pow(Ca,-fAlphaPlate);  
139   G4complex H  = Ha * Hb;                      << 177   G4complex Hb = pow(Cb,-fAlphaGas);
                                                   >> 178   G4complex H  = Ha*Hb;
                                                   >> 179   G4complex F1 =   (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
                                                   >> 180                  * G4double(fPlateNumber) ;
                                                   >> 181   G4complex F2 =   (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
                                                   >> 182                  * (1.0 - exp(-0.5*fPlateNumber*sigma)) ;
                                                   >> 183   //    *(1.0 - pow(H,fPlateNumber)) ;
                                                   >> 184     G4complex R  = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
                                                   >> 185   // G4complex R  = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
                                                   >> 186   result       = 2.0*real(R);  
                                                   >> 187   return      result;
                                                   >> 188   */
                                                   >> 189    // numerically unstable result
                                                   >> 190 
                                                   >> 191   G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma; 
                                                   >> 192  
                                                   >> 193   aZa   = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
                                                   >> 194   bZb   = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
                                                   >> 195   aMa   = fPlateThick*GetPlateLinearPhotoAbs(energy);
                                                   >> 196   bMb   = fGasThick*GetGasLinearPhotoAbs(energy);
                                                   >> 197   sigma = aMa*fPlateThick + bMb*fGasThick;
                                                   >> 198   Qa    = exp(-0.5*aMa);
                                                   >> 199   Qb    = exp(-0.5*bMb);
                                                   >> 200   Q     = Qa*Qb;
                                                   >> 201 
                                                   >> 202   G4complex Ha( Qa*cos(aZa), -Qa*sin(aZa)   );  
                                                   >> 203   G4complex Hb( Qb*cos(bZb), -Qb*sin(bZb)    );
                                                   >> 204   G4complex H  = Ha*Hb;
140   G4complex Hs = conj(H);                         205   G4complex Hs = conj(H);
141   D            = 1.0 / ((1 - Q) * (1 - Q) +    << 206   D            = 1.0 /( (1 - Q)*(1 - Q) + 
142              4 * Q * std::sin(0.5 * (aZa + bZb << 207                   4*Q*sin(0.5*(aZa + bZb))*sin(0.5*(aZa + bZb)) );
143   G4complex F1 =                               << 208   G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
144     (1.0 - Ha) * (1.0 - Hb) * (1.0 - Hs) * G4d << 209                  * G4double(fPlateNumber)*D;
145   G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb  << 210   G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
146                  (1.0 - std::exp(-0.5 * fPlate << 211                    // * (1.0 - pow(H,fPlateNumber)) * D*D;
147   G4complex R = (F1 + F2) * OneInterfaceXTRdEd << 212                  * (1.0 - exp(-0.5*fPlateNumber*sigma)) * D*D;
148   result      = 2.0 * std::real(R);            << 213   G4complex R  = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
149   return result;                               << 214   result       = 2.0*real(R); 
                                                   >> 215   return      result;
                                                   >> 216   
150 }                                                 217 }
                                                   >> 218 
                                                   >> 219 
                                                   >> 220 //
                                                   >> 221 //
                                                   >> 222 ////////////////////////////////////////////////////////////////////////////
                                                   >> 223 
                                                   >> 224 
                                                   >> 225 
                                                   >> 226 
                                                   >> 227 
                                                   >> 228 
                                                   >> 229 
                                                   >> 230 
151                                                   231