Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 27 #include "G4TransparentRegXTRadiator.hh" 28 29 #include "G4PhysicalConstants.hh" 30 31 ////////////////////////////////////////////// 32 // Constructor, destructor 33 G4TransparentRegXTRadiator::G4TransparentRegXT 34 G4LogicalVolume* anEnvelope, G4Material* foi 35 G4double a, G4double b, G4int n, const G4Str 36 : G4VXTRenergyLoss(anEnvelope, foilMat, gasM 37 { 38 if(verboseLevel > 0) 39 G4cout << "Regular transparent X-ray TR r 40 << G4endl; 41 42 // Build energy and angular integral spectra 43 // a radiator 44 45 fAlphaPlate = 10000; 46 fAlphaGas = 1000; 47 } 48 49 ////////////////////////////////////////////// 50 G4TransparentRegXTRadiator::~G4TransparentRegX 51 52 ////////////////////////////////////////////// 53 void G4TransparentRegXTRadiator::ProcessDescri 54 { 55 out << "Simulation of forward X-ray transiti 56 "relativistic charged particles cross 57 "two materials.\n"; 58 } 59 60 ////////////////////////////////////////////// 61 G4double G4TransparentRegXTRadiator::SpectralX 62 { 63 G4double result, sum = 0., tmp, cof1, cof2, 64 G4int k, kMax, kMin; 65 66 cofPHC = 4. * pi * hbarc; 67 tmp = (fSigma1 - fSigma2) / cofPHC / ener 68 cof1 = fPlateThick * tmp; 69 cof2 = fGasThick * tmp; 70 71 cofMin = energy * (fPlateThick + fGasThick) 72 cofMin += (fPlateThick * fSigma1 + fGasThick 73 cofMin /= cofPHC; 74 75 theta2 = cofPHC / (energy * (fPlateThick + f 76 77 kMin = G4int(cofMin); 78 if(cofMin > kMin) 79 kMin++; 80 81 kMax = kMin + 49; 82 83 if(verboseLevel > 2) 84 { 85 G4cout << cof1 << " " << cof2 << " 86 G4cout << "kMin = " << kMin << "; kMax 87 } 88 for(k = kMin; k <= kMax; ++k) 89 { 90 tmp = pi * fPlateThick * (k + cof2) / ( 91 result = (k - cof1) * (k - cof1) * (k + co 92 if(k == kMin && kMin == G4int(cofMin)) 93 { 94 sum += 95 0.5 * std::sin(tmp) * std::sin(tmp) * 96 } 97 else 98 { 99 sum += std::sin(tmp) * std::sin(tmp) * s 100 } 101 theta2k = std::sqrt(theta2 * std::abs(k - 102 103 if(verboseLevel > 2) 104 { 105 G4cout << k << " " << theta2k << " 106 << std::sin(tmp) * std::sin(tmp) 107 << " " << sum << G4endl; 108 } 109 } 110 result = 4. * (cof1 + cof2) * (cof1 + cof2) 111 result *= fPlateNumber; 112 113 return result; 114 } 115 116 ////////////////////////////////////////////// 117 // Approximation for radiator interference fac 118 // fully Regular radiator. The plate and gas g 119 // The mean values of the plate and gas gap th 120 // are supposed to be about XTR formation zone 121 // mean absorption length of XTR photons in co 122 G4double G4TransparentRegXTRadiator::GetStackF 123 124 125 { 126 G4double result, Qa, Qb, Q, aZa, bZb, aMa, b 127 128 aZa = fPlateThick / GetPlateFormationZone( 129 bZb = fGasThick / GetGasFormationZone(ener 130 aMa = fPlateThick * GetPlateLinearPhotoAbs 131 bMb = fGasThick * GetGasLinearPhotoAbs(ene 132 sigma = aMa * fPlateThick + bMb * fGasThick; 133 Qa = std::exp(-0.5 * aMa); 134 Qb = std::exp(-0.5 * bMb); 135 Q = Qa * Qb; 136 137 G4complex Ha(Qa * std::cos(aZa), -Qa * std:: 138 G4complex Hb(Qb * std::cos(bZb), -Qb * std:: 139 G4complex H = Ha * Hb; 140 G4complex Hs = conj(H); 141 D = 1.0 / ((1 - Q) * (1 - Q) + 142 4 * Q * std::sin(0.5 * (aZa + bZb 143 G4complex F1 = 144 (1.0 - Ha) * (1.0 - Hb) * (1.0 - Hs) * G4d 145 G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb 146 (1.0 - std::exp(-0.5 * fPlate 147 G4complex R = (F1 + F2) * OneInterfaceXTRdEd 148 result = 2.0 * std::real(R); 149 return result; 150 } 151