Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 26 27 #include "G4TransparentRegXTRadiator.hh" 27 #include "G4TransparentRegXTRadiator.hh" 28 28 29 #include "G4PhysicalConstants.hh" 29 #include "G4PhysicalConstants.hh" 30 30 31 ////////////////////////////////////////////// 31 //////////////////////////////////////////////////////////////////////////// 32 // Constructor, destructor 32 // Constructor, destructor 33 G4TransparentRegXTRadiator::G4TransparentRegXT 33 G4TransparentRegXTRadiator::G4TransparentRegXTRadiator( 34 G4LogicalVolume* anEnvelope, G4Material* foi 34 G4LogicalVolume* anEnvelope, G4Material* foilMat, G4Material* gasMat, 35 G4double a, G4double b, G4int n, const G4Str 35 G4double a, G4double b, G4int n, const G4String& processName) 36 : G4VXTRenergyLoss(anEnvelope, foilMat, gasM 36 : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, n, processName) 37 { 37 { 38 if(verboseLevel > 0) 38 if(verboseLevel > 0) 39 G4cout << "Regular transparent X-ray TR r 39 G4cout << "Regular transparent X-ray TR radiator EM process is called" 40 << G4endl; 40 << G4endl; 41 41 42 // Build energy and angular integral spectra 42 // Build energy and angular integral spectra of X-ray TR photons from 43 // a radiator 43 // a radiator 44 44 45 fAlphaPlate = 10000; 45 fAlphaPlate = 10000; 46 fAlphaGas = 1000; 46 fAlphaGas = 1000; 47 } 47 } 48 48 49 ////////////////////////////////////////////// 49 /////////////////////////////////////////////////////////////////////////// 50 G4TransparentRegXTRadiator::~G4TransparentRegX << 50 G4TransparentRegXTRadiator::~G4TransparentRegXTRadiator() {} 51 51 52 ////////////////////////////////////////////// 52 /////////////////////////////////////////////////////////////////////////// 53 void G4TransparentRegXTRadiator::ProcessDescri 53 void G4TransparentRegXTRadiator::ProcessDescription(std::ostream& out) const 54 { 54 { 55 out << "Simulation of forward X-ray transiti 55 out << "Simulation of forward X-ray transition radiation generated by\n" 56 "relativistic charged particles cross 56 "relativistic charged particles crossing the interface between\n" 57 "two materials.\n"; 57 "two materials.\n"; 58 } 58 } 59 59 60 ////////////////////////////////////////////// 60 /////////////////////////////////////////////////////////////////////////// 61 G4double G4TransparentRegXTRadiator::SpectralX 61 G4double G4TransparentRegXTRadiator::SpectralXTRdEdx(G4double energy) 62 { 62 { 63 G4double result, sum = 0., tmp, cof1, cof2, 63 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k; 64 G4int k, kMax, kMin; 64 G4int k, kMax, kMin; 65 65 66 cofPHC = 4. * pi * hbarc; 66 cofPHC = 4. * pi * hbarc; 67 tmp = (fSigma1 - fSigma2) / cofPHC / ener 67 tmp = (fSigma1 - fSigma2) / cofPHC / energy; 68 cof1 = fPlateThick * tmp; 68 cof1 = fPlateThick * tmp; 69 cof2 = fGasThick * tmp; 69 cof2 = fGasThick * tmp; 70 70 71 cofMin = energy * (fPlateThick + fGasThick) 71 cofMin = energy * (fPlateThick + fGasThick) / fGamma / fGamma; 72 cofMin += (fPlateThick * fSigma1 + fGasThick 72 cofMin += (fPlateThick * fSigma1 + fGasThick * fSigma2) / energy; 73 cofMin /= cofPHC; 73 cofMin /= cofPHC; 74 74 75 theta2 = cofPHC / (energy * (fPlateThick + f 75 theta2 = cofPHC / (energy * (fPlateThick + fGasThick)); 76 76 77 kMin = G4int(cofMin); 77 kMin = G4int(cofMin); 78 if(cofMin > kMin) 78 if(cofMin > kMin) 79 kMin++; 79 kMin++; 80 80 81 kMax = kMin + 49; 81 kMax = kMin + 49; 82 82 83 if(verboseLevel > 2) 83 if(verboseLevel > 2) 84 { 84 { 85 G4cout << cof1 << " " << cof2 << " 85 G4cout << cof1 << " " << cof2 << " " << cofMin << G4endl; 86 G4cout << "kMin = " << kMin << "; kMax 86 G4cout << "kMin = " << kMin << "; kMax = " << kMax << G4endl; 87 } 87 } 88 for(k = kMin; k <= kMax; ++k) 88 for(k = kMin; k <= kMax; ++k) 89 { 89 { 90 tmp = pi * fPlateThick * (k + cof2) / ( 90 tmp = pi * fPlateThick * (k + cof2) / (fPlateThick + fGasThick); 91 result = (k - cof1) * (k - cof1) * (k + co 91 result = (k - cof1) * (k - cof1) * (k + cof2) * (k + cof2); 92 if(k == kMin && kMin == G4int(cofMin)) 92 if(k == kMin && kMin == G4int(cofMin)) 93 { 93 { 94 sum += 94 sum += 95 0.5 * std::sin(tmp) * std::sin(tmp) * 95 0.5 * std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result; 96 } 96 } 97 else 97 else 98 { 98 { 99 sum += std::sin(tmp) * std::sin(tmp) * s 99 sum += std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result; 100 } 100 } 101 theta2k = std::sqrt(theta2 * std::abs(k - 101 theta2k = std::sqrt(theta2 * std::abs(k - cofMin)); 102 102 103 if(verboseLevel > 2) 103 if(verboseLevel > 2) 104 { 104 { 105 G4cout << k << " " << theta2k << " 105 G4cout << k << " " << theta2k << " " 106 << std::sin(tmp) * std::sin(tmp) 106 << std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result 107 << " " << sum << G4endl; 107 << " " << sum << G4endl; 108 } 108 } 109 } 109 } 110 result = 4. * (cof1 + cof2) * (cof1 + cof2) 110 result = 4. * (cof1 + cof2) * (cof1 + cof2) * sum / energy; 111 result *= fPlateNumber; 111 result *= fPlateNumber; 112 112 113 return result; 113 return result; 114 } 114 } 115 115 116 ////////////////////////////////////////////// 116 /////////////////////////////////////////////////////////////////////////// 117 // Approximation for radiator interference fac 117 // Approximation for radiator interference factor for the case of 118 // fully Regular radiator. The plate and gas g 118 // fully Regular radiator. The plate and gas gap thicknesses are fixed. 119 // The mean values of the plate and gas gap th 119 // The mean values of the plate and gas gap thicknesses 120 // are supposed to be about XTR formation zone 120 // are supposed to be about XTR formation zones but much less than 121 // mean absorption length of XTR photons in co 121 // mean absorption length of XTR photons in corresponding material. 122 G4double G4TransparentRegXTRadiator::GetStackF 122 G4double G4TransparentRegXTRadiator::GetStackFactor(G4double energy, 123 123 G4double gamma, 124 124 G4double varAngle) 125 { 125 { 126 G4double result, Qa, Qb, Q, aZa, bZb, aMa, b 126 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma; 127 127 128 aZa = fPlateThick / GetPlateFormationZone( 128 aZa = fPlateThick / GetPlateFormationZone(energy, gamma, varAngle); 129 bZb = fGasThick / GetGasFormationZone(ener 129 bZb = fGasThick / GetGasFormationZone(energy, gamma, varAngle); 130 aMa = fPlateThick * GetPlateLinearPhotoAbs 130 aMa = fPlateThick * GetPlateLinearPhotoAbs(energy); 131 bMb = fGasThick * GetGasLinearPhotoAbs(ene 131 bMb = fGasThick * GetGasLinearPhotoAbs(energy); 132 sigma = aMa * fPlateThick + bMb * fGasThick; 132 sigma = aMa * fPlateThick + bMb * fGasThick; 133 Qa = std::exp(-0.5 * aMa); 133 Qa = std::exp(-0.5 * aMa); 134 Qb = std::exp(-0.5 * bMb); 134 Qb = std::exp(-0.5 * bMb); 135 Q = Qa * Qb; 135 Q = Qa * Qb; 136 136 137 G4complex Ha(Qa * std::cos(aZa), -Qa * std:: 137 G4complex Ha(Qa * std::cos(aZa), -Qa * std::sin(aZa)); 138 G4complex Hb(Qb * std::cos(bZb), -Qb * std:: 138 G4complex Hb(Qb * std::cos(bZb), -Qb * std::sin(bZb)); 139 G4complex H = Ha * Hb; 139 G4complex H = Ha * Hb; 140 G4complex Hs = conj(H); 140 G4complex Hs = conj(H); 141 D = 1.0 / ((1 - Q) * (1 - Q) + 141 D = 1.0 / ((1 - Q) * (1 - Q) + 142 4 * Q * std::sin(0.5 * (aZa + bZb 142 4 * Q * std::sin(0.5 * (aZa + bZb)) * std::sin(0.5 * (aZa + bZb))); 143 G4complex F1 = 143 G4complex F1 = 144 (1.0 - Ha) * (1.0 - Hb) * (1.0 - Hs) * G4d 144 (1.0 - Ha) * (1.0 - Hb) * (1.0 - Hs) * G4double(fPlateNumber) * D; 145 G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb 145 G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb * (1.0 - Hs) * (1.0 - Hs) * 146 (1.0 - std::exp(-0.5 * fPlate 146 (1.0 - std::exp(-0.5 * fPlateNumber * sigma)) * D * D; 147 G4complex R = (F1 + F2) * OneInterfaceXTRdEd 147 G4complex R = (F1 + F2) * OneInterfaceXTRdEdx(energy, gamma, varAngle); 148 result = 2.0 * std::real(R); 148 result = 2.0 * std::real(R); 149 return result; 149 return result; 150 } 150 } 151 151