Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4TransitionRadiation.cc,v 1.6 2005/07/28 23:58:01 gum Exp $ >> 25 // GEANT4 tag $Name: geant4-08-00-patch-01 $ >> 26 // 26 // G4TransitionRadiation class -- implementati 27 // G4TransitionRadiation class -- implementation file 27 28 28 // GEANT 4 class implementation file --- Copyr 29 // GEANT 4 class implementation file --- Copyright CERN 1995 >> 30 // CERN Geneva Switzerland 29 31 30 // For information related to this code, pleas 32 // For information related to this code, please, contact 31 // CERN, CN Division, ASD Group 33 // CERN, CN Division, ASD Group 32 // History: 34 // History: 33 // 1st version 11.09.97 V. Grichine (Vladimir. 35 // 1st version 11.09.97 V. Grichine (Vladimir.Grichine@cern.ch ) 34 // 2nd version 16.12.97 V. Grichine 36 // 2nd version 16.12.97 V. Grichine 35 // 3rd version 28.07.05, P.Gumplinger add G4Pr 37 // 3rd version 28.07.05, P.Gumplinger add G4ProcessType to constructor 36 38 37 //#include <cmath> << 39 >> 40 #include <cmath> >> 41 // #include "G4ios.hh" >> 42 // #include <fstream.h> >> 43 // #include <stdlib.h> 38 44 39 #include "G4TransitionRadiation.hh" 45 #include "G4TransitionRadiation.hh" >> 46 #include "G4Material.hh" >> 47 >> 48 // Init gamma array >> 49 40 50 41 #include "G4EmProcessSubType.hh" << 51 // Local constants >> 52 >> 53 const G4int G4TransitionRadiation::fSympsonNumber = 100 ; >> 54 const G4int G4TransitionRadiation::fGammaNumber = 15 ; >> 55 const G4int G4TransitionRadiation::fPointNumber = 100 ; >> 56 >> 57 using namespace std; 42 58 43 ////////////////////////////////////////////// 59 /////////////////////////////////////////////////////////////////////// >> 60 // 44 // Constructor for selected couple of material 61 // Constructor for selected couple of materials 45 G4TransitionRadiation::G4TransitionRadiation(c << 62 // 46 G << 63 >> 64 G4TransitionRadiation:: >> 65 G4TransitionRadiation( const G4String& processName, G4ProcessType type ) 47 : G4VDiscreteProcess(processName, type) 66 : G4VDiscreteProcess(processName, type) 48 { 67 { 49 SetProcessSubType(fTransitionRadiation); << 68 // fMatIndex1 = pMat1->GetIndex() ; 50 fMatIndex1 = fMatIndex2 = 0; << 69 // fMatIndex2 = pMat2->GetIndex() ; 51 << 52 fGamma = fEnergy = fVarAngle = fMinEnergy = << 53 fSigma1 = fSigma2 = 0.0; << 54 } 70 } 55 71 56 ////////////////////////////////////////////// 72 ////////////////////////////////////////////////////////////////////// >> 73 // 57 // Destructor 74 // Destructor 58 G4TransitionRadiation::~G4TransitionRadiation( << 75 // 59 << 60 void G4TransitionRadiation::ProcessDescription << 61 { << 62 out << "Base class for simulation of x-ray t << 63 } << 64 << 65 G4bool G4TransitionRadiation::IsApplicable( << 66 const G4ParticleDefinition& aParticleType) << 67 { << 68 return (aParticleType.GetPDGCharge() != 0.0) << 69 } << 70 76 71 G4double G4TransitionRadiation::GetMeanFreePat << 77 G4TransitionRadiation::~G4TransitionRadiation() 72 << 73 { 78 { 74 *condition = Forced; << 79 ; 75 return DBL_MAX; // so TR doesn't limit mean << 76 } 80 } 77 81 78 G4VParticleChange* G4TransitionRadiation::Post << 79 << 80 { << 81 ClearNumberOfInteractionLengthLeft(); << 82 return &aParticleChange; << 83 } << 84 82 85 ////////////////////////////////////////////// 83 /////////////////////////////////////////////////////////////////// >> 84 // 86 // Sympson integral of TR spectral-angle densi 85 // Sympson integral of TR spectral-angle density over energy between 87 // the limits energy 1 and energy2 at fixed va << 86 // the limits energy 1 and energy2 at fixed varAngle = 1 - cos(Theta) 88 G4double G4TransitionRadiation::IntegralOverEn << 87 89 << 88 G4double 90 << 89 G4TransitionRadiation::IntegralOverEnergy( G4double energy1, 91 { << 90 G4double energy2, 92 G4int i; << 91 G4double varAngle ) const 93 G4double h, sumEven = 0.0, sumOdd = 0.0; << 92 { 94 h = 0.5 * (energy2 - energy1) / fSympsonNumb << 93 G4int i ; 95 for(i = 1; i < fSympsonNumber; i++) << 94 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; >> 95 h = 0.5*(energy2 - energy1)/fSympsonNumber ; >> 96 for(i=1;i<fSympsonNumber;i++) 96 { 97 { 97 sumEven += SpectralAngleTRdensity(energy1 << 98 sumEven += SpectralAngleTRdensity(energy1 + 2*i*h,varAngle) ; 98 sumOdd += SpectralAngleTRdensity(energy1 + << 99 sumOdd += SpectralAngleTRdensity(energy1 + (2*i - 1)*h,varAngle) ; 99 } 100 } 100 sumOdd += << 101 sumOdd += SpectralAngleTRdensity(energy1 + (2*fSympsonNumber - 1)*h,varAngle) ; 101 SpectralAngleTRdensity(energy1 + (2 * fSym << 102 return h*( SpectralAngleTRdensity(energy1,varAngle) 102 return h * << 103 + SpectralAngleTRdensity(energy2,varAngle) 103 (SpectralAngleTRdensity(energy1, varA << 104 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 104 SpectralAngleTRdensity(energy2, varA << 105 2.0 * sumEven) / << 106 3.0; << 107 } 105 } 108 106 >> 107 >> 108 109 ////////////////////////////////////////////// 109 /////////////////////////////////////////////////////////////////// >> 110 // 110 // Sympson integral of TR spectral-angle densi 111 // Sympson integral of TR spectral-angle density over energy between 111 // the limits varAngle1 and varAngle2 at fixed 112 // the limits varAngle1 and varAngle2 at fixed energy 112 G4double G4TransitionRadiation::IntegralOverAn << 113 113 << 114 G4double 114 << 115 G4TransitionRadiation::IntegralOverAngle( G4double energy, 115 { << 116 G4double varAngle1, 116 G4int i; << 117 G4double varAngle2 ) const 117 G4double h, sumEven = 0.0, sumOdd = 0.0; << 118 { 118 h = 0.5 * (varAngle2 - varAngle1) / fSympson << 119 G4int i ; 119 for(i = 1; i < fSympsonNumber; ++i) << 120 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; >> 121 h = 0.5*(varAngle2 - varAngle1)/fSympsonNumber ; >> 122 for(i=1;i<fSympsonNumber;i++) 120 { 123 { 121 sumEven += SpectralAngleTRdensity(energy, << 124 sumEven += SpectralAngleTRdensity(energy,varAngle1 + 2*i*h) ; 122 sumOdd += SpectralAngleTRdensity(energy, v << 125 sumOdd += SpectralAngleTRdensity(energy,varAngle1 + (2*i - 1)*h) ; 123 } 126 } 124 sumOdd += << 127 sumOdd += SpectralAngleTRdensity(energy,varAngle1 + (2*fSympsonNumber - 1)*h) ; 125 SpectralAngleTRdensity(energy, varAngle1 + << 126 128 127 return h * << 129 return h*( SpectralAngleTRdensity(energy,varAngle1) 128 (SpectralAngleTRdensity(energy, varAn << 130 + SpectralAngleTRdensity(energy,varAngle2) 129 SpectralAngleTRdensity(energy, varAn << 131 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 130 2.0 * sumEven) / << 131 3.0; << 132 } 132 } 133 133 134 ////////////////////////////////////////////// 134 /////////////////////////////////////////////////////////////////// >> 135 // 135 // The number of transition radiation photons 136 // The number of transition radiation photons generated in the 136 // angle interval between varAngle1 and varAng 137 // angle interval between varAngle1 and varAngle2 137 G4double G4TransitionRadiation::AngleIntegralD << 138 // 138 G4double varAngle1, G4double varAngle2) cons << 139 139 { << 140 G4double G4TransitionRadiation:: 140 G4int i; << 141 AngleIntegralDistribution( G4double varAngle1, 141 G4double h, sumEven = 0.0, sumOdd = 0.0; << 142 G4double varAngle2 ) const 142 h = 0.5 * (varAngle2 - varAngle1) / fSympson << 143 { 143 for(i = 1; i < fSympsonNumber; ++i) << 144 G4int i ; >> 145 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; >> 146 h = 0.5*(varAngle2 - varAngle1)/fSympsonNumber ; >> 147 for(i=1;i<fSympsonNumber;i++) 144 { 148 { 145 sumEven += IntegralOverEnergy(fMinEnergy, << 149 sumEven += IntegralOverEnergy(fMinEnergy, 146 fMinEnergy + << 150 fMinEnergy +0.3*(fMaxEnergy-fMinEnergy), 147 varAngle1 + << 151 varAngle1 + 2*i*h) 148 IntegralOverEnergy(fMinEnergy + << 152 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 149 fMaxEnergy, << 153 fMaxEnergy, 150 sumOdd += IntegralOverEnergy(fMinEnergy, << 154 varAngle1 + 2*i*h); 151 fMinEnergy + << 155 sumOdd += IntegralOverEnergy(fMinEnergy, 152 varAngle1 + ( << 156 fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 153 IntegralOverEnergy(fMinEnergy + << 157 varAngle1 + (2*i - 1)*h) 154 fMaxEnergy, v << 158 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), >> 159 fMaxEnergy, >> 160 varAngle1 + (2*i - 1)*h) ; 155 } 161 } 156 sumOdd += << 162 sumOdd += IntegralOverEnergy(fMinEnergy, 157 IntegralOverEnergy(fMinEnergy, fMinEnergy << 163 fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 158 varAngle1 + (2 * fSymps << 164 varAngle1 + (2*fSympsonNumber - 1)*h) 159 IntegralOverEnergy(fMinEnergy + 0.3 * (fMa << 165 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 160 varAngle1 + (2 * fSymps << 166 fMaxEnergy, 161 << 167 varAngle1 + (2*fSympsonNumber - 1)*h) ; 162 return h * << 168 163 (IntegralOverEnergy(fMinEnergy, << 169 return h*(IntegralOverEnergy(fMinEnergy, 164 fMinEnergy + 0.3 << 170 fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 165 varAngle1) + << 171 varAngle1) 166 IntegralOverEnergy(fMinEnergy + 0.3 << 172 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 167 fMaxEnergy, varAn << 173 fMaxEnergy, 168 IntegralOverEnergy(fMinEnergy, << 174 varAngle1) 169 fMinEnergy + 0.3 << 175 + IntegralOverEnergy(fMinEnergy, 170 varAngle2) + << 176 fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 171 IntegralOverEnergy(fMinEnergy + 0.3 << 177 varAngle2) 172 fMaxEnergy, varAn << 178 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 173 4.0 * sumOdd + 2.0 * sumEven) / << 179 fMaxEnergy, 174 3.0; << 180 varAngle2) >> 181 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 175 } 182 } 176 183 177 ////////////////////////////////////////////// 184 /////////////////////////////////////////////////////////////////// >> 185 // 178 // The number of transition radiation photons, 186 // The number of transition radiation photons, generated in the 179 // energy interval between energy1 and energy2 187 // energy interval between energy1 and energy2 180 G4double G4TransitionRadiation::EnergyIntegral << 188 // 181 G4double energy1, G4double energy2) const << 189 182 { << 190 G4double G4TransitionRadiation:: 183 G4int i; << 191 EnergyIntegralDistribution( G4double energy1, 184 G4double h, sumEven = 0.0, sumOdd = 0.0; << 192 G4double energy2 ) const 185 h = 0.5 * (energy2 - energy1) / fSympsonNumb << 193 { 186 for(i = 1; i < fSympsonNumber; ++i) << 194 G4int i ; >> 195 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; >> 196 h = 0.5*(energy2 - energy1)/fSympsonNumber ; >> 197 for(i=1;i<fSympsonNumber;i++) 187 { 198 { 188 sumEven += << 199 sumEven += IntegralOverAngle(energy1 + 2*i*h,0.0,0.01*fMaxTheta ) 189 IntegralOverAngle(energy1 + 2 * i * h, 0 << 200 + IntegralOverAngle(energy1 + 2*i*h,0.01*fMaxTheta,fMaxTheta); 190 IntegralOverAngle(energy1 + 2 * i * h, 0 << 201 sumOdd += IntegralOverAngle(energy1 + (2*i - 1)*h,0.0,0.01*fMaxTheta) 191 sumOdd += << 202 + IntegralOverAngle(energy1 + (2*i - 1)*h,0.01*fMaxTheta,fMaxTheta) ; 192 IntegralOverAngle(energy1 + (2 * i - 1) << 193 IntegralOverAngle(energy1 + (2 * i - 1) << 194 } 203 } 195 sumOdd += IntegralOverAngle(energy1 + (2 * f << 204 sumOdd += IntegralOverAngle(energy1 + (2*fSympsonNumber - 1)*h, 196 0.01 * fMaxTheta << 205 0.0,0.01*fMaxTheta) 197 IntegralOverAngle(energy1 + (2 * f << 206 + IntegralOverAngle(energy1 + (2*fSympsonNumber - 1)*h, 198 0.01 * fMaxTheta << 207 0.01*fMaxTheta,fMaxTheta) ; 199 << 208 200 return h * << 209 return h*(IntegralOverAngle(energy1,0.0,0.01*fMaxTheta) 201 (IntegralOverAngle(energy1, 0.0, 0.01 << 210 + IntegralOverAngle(energy1,0.01*fMaxTheta,fMaxTheta) 202 IntegralOverAngle(energy1, 0.01 * fM << 211 + IntegralOverAngle(energy2,0.0,0.01*fMaxTheta) 203 IntegralOverAngle(energy2, 0.0, 0.01 << 212 + IntegralOverAngle(energy2,0.01*fMaxTheta,fMaxTheta) 204 IntegralOverAngle(energy2, 0.01 * fM << 213 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 205 4.0 * sumOdd + 2.0 * sumEven) / << 206 3.0; << 207 } 214 } >> 215 >> 216 >> 217 >> 218 >> 219 // end of G4TransitionRadiation implementation file -------------------------- 208 220