Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // 26 // G4TransitionRadiation class -- implementati 27 // G4TransitionRadiation class -- implementation file 27 28 28 // GEANT 4 class implementation file --- Copyr 29 // GEANT 4 class implementation file --- Copyright CERN 1995 >> 30 // CERN Geneva Switzerland 29 31 30 // For information related to this code, pleas 32 // For information related to this code, please, contact 31 // CERN, CN Division, ASD Group 33 // CERN, CN Division, ASD Group 32 // History: 34 // History: 33 // 1st version 11.09.97 V. Grichine (Vladimir. 35 // 1st version 11.09.97 V. Grichine (Vladimir.Grichine@cern.ch ) 34 // 2nd version 16.12.97 V. Grichine 36 // 2nd version 16.12.97 V. Grichine 35 // 3rd version 28.07.05, P.Gumplinger add G4Pr 37 // 3rd version 28.07.05, P.Gumplinger add G4ProcessType to constructor 36 38 37 //#include <cmath> << 38 39 39 #include "G4TransitionRadiation.hh" << 40 #include <cmath> 40 41 >> 42 #include "G4TransitionRadiation.hh" >> 43 #include "G4Material.hh" 41 #include "G4EmProcessSubType.hh" 44 #include "G4EmProcessSubType.hh" 42 45 >> 46 // Local constants >> 47 >> 48 const G4int G4TransitionRadiation::fSympsonNumber = 100 ; >> 49 const G4int G4TransitionRadiation::fGammaNumber = 15 ; >> 50 const G4int G4TransitionRadiation::fPointNumber = 100 ; >> 51 >> 52 43 ////////////////////////////////////////////// 53 /////////////////////////////////////////////////////////////////////// >> 54 // 44 // Constructor for selected couple of material 55 // Constructor for selected couple of materials 45 G4TransitionRadiation::G4TransitionRadiation(c << 56 // 46 G << 57 >> 58 G4TransitionRadiation:: >> 59 G4TransitionRadiation( const G4String& processName, G4ProcessType type ) 47 : G4VDiscreteProcess(processName, type) 60 : G4VDiscreteProcess(processName, type) 48 { 61 { 49 SetProcessSubType(fTransitionRadiation); 62 SetProcessSubType(fTransitionRadiation); 50 fMatIndex1 = fMatIndex2 = 0; 63 fMatIndex1 = fMatIndex2 = 0; 51 64 52 fGamma = fEnergy = fVarAngle = fMinEnergy = << 65 fGamma = fEnergy = fVarAngle = fMinEnergy = fMaxEnergy = fMaxTheta = fSigma1 = fSigma2 = 0.0; 53 fSigma1 = fSigma2 = 0.0; << 54 } 66 } 55 67 56 ////////////////////////////////////////////// 68 ////////////////////////////////////////////////////////////////////// >> 69 // 57 // Destructor 70 // Destructor 58 G4TransitionRadiation::~G4TransitionRadiation( << 71 // 59 72 60 void G4TransitionRadiation::ProcessDescription << 73 G4TransitionRadiation::~G4TransitionRadiation() 61 { << 74 {} 62 out << "Base class for simulation of x-ray t << 63 } << 64 75 65 G4bool G4TransitionRadiation::IsApplicable( << 76 G4bool 66 const G4ParticleDefinition& aParticleType) << 77 G4TransitionRadiation::IsApplicable(const G4ParticleDefinition& aParticleType) 67 { 78 { 68 return (aParticleType.GetPDGCharge() != 0.0) << 79 return ( aParticleType.GetPDGCharge() != 0.0 ); 69 } 80 } 70 81 71 G4double G4TransitionRadiation::GetMeanFreePat << 82 G4double G4TransitionRadiation::GetMeanFreePath(const G4Track&, 72 << 83 G4double, >> 84 G4ForceCondition* condition) 73 { 85 { 74 *condition = Forced; 86 *condition = Forced; 75 return DBL_MAX; // so TR doesn't limit mean << 87 return DBL_MAX; // so TR doesn't limit mean free path 76 } 88 } 77 89 78 G4VParticleChange* G4TransitionRadiation::Post 90 G4VParticleChange* G4TransitionRadiation::PostStepDoIt(const G4Track&, 79 << 91 const G4Step&) 80 { 92 { 81 ClearNumberOfInteractionLengthLeft(); 93 ClearNumberOfInteractionLengthLeft(); 82 return &aParticleChange; 94 return &aParticleChange; 83 } 95 } 84 96 85 ////////////////////////////////////////////// 97 /////////////////////////////////////////////////////////////////// >> 98 // 86 // Sympson integral of TR spectral-angle densi 99 // Sympson integral of TR spectral-angle density over energy between 87 // the limits energy 1 and energy2 at fixed va 100 // the limits energy 1 and energy2 at fixed varAngle = 1 - std::cos(Theta) 88 G4double G4TransitionRadiation::IntegralOverEn << 101 89 << 102 G4double 90 << 103 G4TransitionRadiation::IntegralOverEnergy( G4double energy1, 91 { << 104 G4double energy2, 92 G4int i; << 105 G4double varAngle ) const 93 G4double h, sumEven = 0.0, sumOdd = 0.0; << 106 { 94 h = 0.5 * (energy2 - energy1) / fSympsonNumb << 107 G4int i ; 95 for(i = 1; i < fSympsonNumber; i++) << 108 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; >> 109 h = 0.5*(energy2 - energy1)/fSympsonNumber ; >> 110 for(i=1;i<fSympsonNumber;i++) 96 { 111 { 97 sumEven += SpectralAngleTRdensity(energy1 << 112 sumEven += SpectralAngleTRdensity(energy1 + 2*i*h,varAngle) ; 98 sumOdd += SpectralAngleTRdensity(energy1 + << 113 sumOdd += SpectralAngleTRdensity(energy1 + (2*i - 1)*h,varAngle) ; 99 } 114 } 100 sumOdd += << 115 sumOdd += SpectralAngleTRdensity(energy1 + (2*fSympsonNumber - 1)*h,varAngle) ; 101 SpectralAngleTRdensity(energy1 + (2 * fSym << 116 return h*( SpectralAngleTRdensity(energy1,varAngle) 102 return h * << 117 + SpectralAngleTRdensity(energy2,varAngle) 103 (SpectralAngleTRdensity(energy1, varA << 118 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 104 SpectralAngleTRdensity(energy2, varA << 105 2.0 * sumEven) / << 106 3.0; << 107 } 119 } 108 120 >> 121 >> 122 109 ////////////////////////////////////////////// 123 /////////////////////////////////////////////////////////////////// >> 124 // 110 // Sympson integral of TR spectral-angle densi 125 // Sympson integral of TR spectral-angle density over energy between 111 // the limits varAngle1 and varAngle2 at fixed 126 // the limits varAngle1 and varAngle2 at fixed energy 112 G4double G4TransitionRadiation::IntegralOverAn << 127 113 << 128 G4double 114 << 129 G4TransitionRadiation::IntegralOverAngle( G4double energy, 115 { << 130 G4double varAngle1, 116 G4int i; << 131 G4double varAngle2 ) const 117 G4double h, sumEven = 0.0, sumOdd = 0.0; << 132 { 118 h = 0.5 * (varAngle2 - varAngle1) / fSympson << 133 G4int i ; 119 for(i = 1; i < fSympsonNumber; ++i) << 134 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; >> 135 h = 0.5*(varAngle2 - varAngle1)/fSympsonNumber ; >> 136 for(i=1;i<fSympsonNumber;i++) 120 { 137 { 121 sumEven += SpectralAngleTRdensity(energy, << 138 sumEven += SpectralAngleTRdensity(energy,varAngle1 + 2*i*h) ; 122 sumOdd += SpectralAngleTRdensity(energy, v << 139 sumOdd += SpectralAngleTRdensity(energy,varAngle1 + (2*i - 1)*h) ; 123 } 140 } 124 sumOdd += << 141 sumOdd += SpectralAngleTRdensity(energy,varAngle1 + (2*fSympsonNumber - 1)*h) ; 125 SpectralAngleTRdensity(energy, varAngle1 + << 126 142 127 return h * << 143 return h*( SpectralAngleTRdensity(energy,varAngle1) 128 (SpectralAngleTRdensity(energy, varAn << 144 + SpectralAngleTRdensity(energy,varAngle2) 129 SpectralAngleTRdensity(energy, varAn << 145 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 130 2.0 * sumEven) / << 131 3.0; << 132 } 146 } 133 147 134 ////////////////////////////////////////////// 148 /////////////////////////////////////////////////////////////////// >> 149 // 135 // The number of transition radiation photons 150 // The number of transition radiation photons generated in the 136 // angle interval between varAngle1 and varAng 151 // angle interval between varAngle1 and varAngle2 137 G4double G4TransitionRadiation::AngleIntegralD << 152 // 138 G4double varAngle1, G4double varAngle2) cons << 153 139 { << 154 G4double G4TransitionRadiation:: 140 G4int i; << 155 AngleIntegralDistribution( G4double varAngle1, 141 G4double h, sumEven = 0.0, sumOdd = 0.0; << 156 G4double varAngle2 ) const 142 h = 0.5 * (varAngle2 - varAngle1) / fSympson << 157 { 143 for(i = 1; i < fSympsonNumber; ++i) << 158 G4int i ; >> 159 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; >> 160 h = 0.5*(varAngle2 - varAngle1)/fSympsonNumber ; >> 161 for(i=1;i<fSympsonNumber;i++) 144 { 162 { 145 sumEven += IntegralOverEnergy(fMinEnergy, << 163 sumEven += IntegralOverEnergy(fMinEnergy, 146 fMinEnergy + << 164 fMinEnergy +0.3*(fMaxEnergy-fMinEnergy), 147 varAngle1 + << 165 varAngle1 + 2*i*h) 148 IntegralOverEnergy(fMinEnergy + << 166 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 149 fMaxEnergy, << 167 fMaxEnergy, 150 sumOdd += IntegralOverEnergy(fMinEnergy, << 168 varAngle1 + 2*i*h); 151 fMinEnergy + << 169 sumOdd += IntegralOverEnergy(fMinEnergy, 152 varAngle1 + ( << 170 fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 153 IntegralOverEnergy(fMinEnergy + << 171 varAngle1 + (2*i - 1)*h) 154 fMaxEnergy, v << 172 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), >> 173 fMaxEnergy, >> 174 varAngle1 + (2*i - 1)*h) ; 155 } 175 } 156 sumOdd += << 176 sumOdd += IntegralOverEnergy(fMinEnergy, 157 IntegralOverEnergy(fMinEnergy, fMinEnergy << 177 fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 158 varAngle1 + (2 * fSymps << 178 varAngle1 + (2*fSympsonNumber - 1)*h) 159 IntegralOverEnergy(fMinEnergy + 0.3 * (fMa << 179 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 160 varAngle1 + (2 * fSymps << 180 fMaxEnergy, 161 << 181 varAngle1 + (2*fSympsonNumber - 1)*h) ; 162 return h * << 182 163 (IntegralOverEnergy(fMinEnergy, << 183 return h*(IntegralOverEnergy(fMinEnergy, 164 fMinEnergy + 0.3 << 184 fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 165 varAngle1) + << 185 varAngle1) 166 IntegralOverEnergy(fMinEnergy + 0.3 << 186 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 167 fMaxEnergy, varAn << 187 fMaxEnergy, 168 IntegralOverEnergy(fMinEnergy, << 188 varAngle1) 169 fMinEnergy + 0.3 << 189 + IntegralOverEnergy(fMinEnergy, 170 varAngle2) + << 190 fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 171 IntegralOverEnergy(fMinEnergy + 0.3 << 191 varAngle2) 172 fMaxEnergy, varAn << 192 + IntegralOverEnergy(fMinEnergy + 0.3*(fMaxEnergy - fMinEnergy), 173 4.0 * sumOdd + 2.0 * sumEven) / << 193 fMaxEnergy, 174 3.0; << 194 varAngle2) >> 195 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 175 } 196 } 176 197 177 ////////////////////////////////////////////// 198 /////////////////////////////////////////////////////////////////// >> 199 // 178 // The number of transition radiation photons, 200 // The number of transition radiation photons, generated in the 179 // energy interval between energy1 and energy2 201 // energy interval between energy1 and energy2 180 G4double G4TransitionRadiation::EnergyIntegral << 202 // 181 G4double energy1, G4double energy2) const << 203 182 { << 204 G4double G4TransitionRadiation:: 183 G4int i; << 205 EnergyIntegralDistribution( G4double energy1, 184 G4double h, sumEven = 0.0, sumOdd = 0.0; << 206 G4double energy2 ) const 185 h = 0.5 * (energy2 - energy1) / fSympsonNumb << 207 { 186 for(i = 1; i < fSympsonNumber; ++i) << 208 G4int i ; >> 209 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; >> 210 h = 0.5*(energy2 - energy1)/fSympsonNumber ; >> 211 for(i=1;i<fSympsonNumber;i++) 187 { 212 { 188 sumEven += << 213 sumEven += IntegralOverAngle(energy1 + 2*i*h,0.0,0.01*fMaxTheta ) 189 IntegralOverAngle(energy1 + 2 * i * h, 0 << 214 + IntegralOverAngle(energy1 + 2*i*h,0.01*fMaxTheta,fMaxTheta); 190 IntegralOverAngle(energy1 + 2 * i * h, 0 << 215 sumOdd += IntegralOverAngle(energy1 + (2*i - 1)*h,0.0,0.01*fMaxTheta) 191 sumOdd += << 216 + IntegralOverAngle(energy1 + (2*i - 1)*h,0.01*fMaxTheta,fMaxTheta) ; 192 IntegralOverAngle(energy1 + (2 * i - 1) << 193 IntegralOverAngle(energy1 + (2 * i - 1) << 194 } 217 } 195 sumOdd += IntegralOverAngle(energy1 + (2 * f << 218 sumOdd += IntegralOverAngle(energy1 + (2*fSympsonNumber - 1)*h, 196 0.01 * fMaxTheta << 219 0.0,0.01*fMaxTheta) 197 IntegralOverAngle(energy1 + (2 * f << 220 + IntegralOverAngle(energy1 + (2*fSympsonNumber - 1)*h, 198 0.01 * fMaxTheta << 221 0.01*fMaxTheta,fMaxTheta) ; 199 << 222 200 return h * << 223 return h*(IntegralOverAngle(energy1,0.0,0.01*fMaxTheta) 201 (IntegralOverAngle(energy1, 0.0, 0.01 << 224 + IntegralOverAngle(energy1,0.01*fMaxTheta,fMaxTheta) 202 IntegralOverAngle(energy1, 0.01 * fM << 225 + IntegralOverAngle(energy2,0.0,0.01*fMaxTheta) 203 IntegralOverAngle(energy2, 0.0, 0.01 << 226 + IntegralOverAngle(energy2,0.01*fMaxTheta,fMaxTheta) 204 IntegralOverAngle(energy2, 0.01 * fM << 227 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 205 4.0 * sumOdd + 2.0 * sumEven) / << 206 3.0; << 207 } 228 } >> 229 >> 230 // end of G4TransitionRadiation implementation file -------------------------- 208 231