Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4StrawTubeXTRadiator.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4StrawTubeXTRadiator.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4StrawTubeXTRadiator.cc (Version 11.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26                                                    26 
 27 #include "G4StrawTubeXTRadiator.hh"                27 #include "G4StrawTubeXTRadiator.hh"
 28                                                    28 
 29 #include "G4Gamma.hh"                              29 #include "G4Gamma.hh"
 30 #include "G4PhysicalConstants.hh"                  30 #include "G4PhysicalConstants.hh"
 31 #include "G4SystemOfUnits.hh"                      31 #include "G4SystemOfUnits.hh"
 32                                                    32 
 33 //////////////////////////////////////////////     33 ////////////////////////////////////////////////////////////////////////////
 34 // Constructor, destructor                         34 // Constructor, destructor
 35 G4StrawTubeXTRadiator::G4StrawTubeXTRadiator(G     35 G4StrawTubeXTRadiator::G4StrawTubeXTRadiator(G4LogicalVolume* anEnvelope,
 36                                              G     36                                              G4Material* foilMat,
 37                                              G     37                                              G4Material* gasMat, G4double a,
 38                                              G     38                                              G4double b, G4Material* mediumMat,
 39                                              G     39                                              G4bool unishut,
 40                                              c     40                                              const G4String& processName)
 41   : G4VXTRenergyLoss(anEnvelope, foilMat, gasM     41   : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, 1, processName)
 42 {                                                  42 {
 43   if(verboseLevel > 0)                             43   if(verboseLevel > 0)
 44     G4cout << "Straw tube X-ray TR  radiator E     44     G4cout << "Straw tube X-ray TR  radiator EM process is called" << G4endl;
 45                                                    45 
 46   if(unishut)                                      46   if(unishut)
 47   {                                                47   {
 48     fAlphaPlate = 1. / 3.;                         48     fAlphaPlate = 1. / 3.;
 49     fAlphaGas   = 12.4;                            49     fAlphaGas   = 12.4;
 50     if(verboseLevel > 0)                           50     if(verboseLevel > 0)
 51       G4cout << "straw uniform shooting: "         51       G4cout << "straw uniform shooting: "
 52              << "fAlphaPlate = " << fAlphaPlat     52              << "fAlphaPlate = " << fAlphaPlate
 53              << " ; fAlphaGas = " << fAlphaGas     53              << " ; fAlphaGas = " << fAlphaGas << G4endl;
 54   }                                                54   }
 55   else                                             55   else
 56   {                                                56   {
 57     fAlphaPlate = 0.5;                             57     fAlphaPlate = 0.5;
 58     fAlphaGas   = 5.;                              58     fAlphaGas   = 5.;
 59     if(verboseLevel > 0)                           59     if(verboseLevel > 0)
 60       G4cout << "straw isotropical shooting: "     60       G4cout << "straw isotropical shooting: "
 61              << "fAlphaPlate = " << fAlphaPlat     61              << "fAlphaPlate = " << fAlphaPlate
 62              << " ; fAlphaGas = " << fAlphaGas     62              << " ; fAlphaGas = " << fAlphaGas << G4endl;
 63   }                                                63   }
 64                                                    64 
 65   // index of medium material                      65   // index of medium material
 66   fMatIndex3 = (G4int)mediumMat->GetIndex();       66   fMatIndex3 = (G4int)mediumMat->GetIndex();
 67   if(verboseLevel > 0)                             67   if(verboseLevel > 0)
 68     G4cout << "medium material = " << mediumMa     68     G4cout << "medium material = " << mediumMat->GetName() << G4endl;
 69                                                    69 
 70   // plasma energy squared for plate material      70   // plasma energy squared for plate material
 71   fSigma3 = fPlasmaCof * mediumMat->GetElectro     71   fSigma3 = fPlasmaCof * mediumMat->GetElectronDensity();
 72   if(verboseLevel > 0)                             72   if(verboseLevel > 0)
 73     G4cout << "medium plasma energy = " << std     73     G4cout << "medium plasma energy = " << std::sqrt(fSigma3) / eV << " eV"
 74            << G4endl;                              74            << G4endl;
 75                                                    75 
 76   // Compute cofs for preparation of linear ph     76   // Compute cofs for preparation of linear photo absorption in external medium
 77   ComputeMediumPhotoAbsCof();                      77   ComputeMediumPhotoAbsCof();
 78 }                                                  78 }
 79                                                    79 
 80 //////////////////////////////////////////////     80 ///////////////////////////////////////////////////////////////////////////
 81 G4StrawTubeXTRadiator::~G4StrawTubeXTRadiator(     81 G4StrawTubeXTRadiator::~G4StrawTubeXTRadiator() = default;
 82                                                    82 
 83 void G4StrawTubeXTRadiator::ProcessDescription     83 void G4StrawTubeXTRadiator::ProcessDescription(std::ostream& out) const
 84 {                                                  84 {
 85   out << "Simulation of forward X-ray transiti     85   out << "Simulation of forward X-ray transition radiation for the case of\n"
 86          "a straw tube radiator.\n";               86          "a straw tube radiator.\n";
 87 }                                                  87 }
 88                                                    88 
 89 //////////////////////////////////////////////     89 ///////////////////////////////////////////////////////////////////////////
 90 // Approximation for radiator interference fac     90 // Approximation for radiator interference factor for the case of
 91 // straw tube radiator. The plate (window, str     91 // straw tube radiator. The plate (window, straw wall) and gas (inside straw)
 92 // gap thicknesses are gamma distributed.          92 // gap thicknesses are gamma distributed.
 93 // The mean values of the plate and gas gap th     93 // The mean values of the plate and gas gap thicknesses
 94 // are supposed to be about XTR formation zone     94 // are supposed to be about XTR formation zone.
 95 G4double G4StrawTubeXTRadiator::GetStackFactor     95 G4double G4StrawTubeXTRadiator::GetStackFactor(G4double energy, G4double gamma,
 96                                                    96                                                G4double varAngle)
 97 {                                                  97 {
 98   G4double result, L2, L3, M2, M3;                 98   G4double result, L2, L3, M2, M3;
 99                                                    99 
100   L2 = GetPlateFormationZone(energy, gamma, va    100   L2 = GetPlateFormationZone(energy, gamma, varAngle);
101   L3 = GetGasFormationZone(energy, gamma, varA    101   L3 = GetGasFormationZone(energy, gamma, varAngle);
102                                                   102 
103   M2 = GetPlateLinearPhotoAbs(energy);            103   M2 = GetPlateLinearPhotoAbs(energy);
104   M3 = GetGasLinearPhotoAbs(energy);              104   M3 = GetGasLinearPhotoAbs(energy);
105                                                   105 
106   G4complex C2(1.0 + 0.5 * fPlateThick * M2 /     106   G4complex C2(1.0 + 0.5 * fPlateThick * M2 / fAlphaPlate,
107                fPlateThick / L2 / fAlphaPlate)    107                fPlateThick / L2 / fAlphaPlate);
108   G4complex C3(1.0 + 0.5 * fGasThick * M3 / fA    108   G4complex C3(1.0 + 0.5 * fGasThick * M3 / fAlphaGas,
109                fGasThick / L3 / fAlphaGas);       109                fGasThick / L3 / fAlphaGas);
110                                                   110 
111   G4complex H2 = std::pow(C2, -fAlphaPlate);      111   G4complex H2 = std::pow(C2, -fAlphaPlate);
112   G4complex H3 = std::pow(C3, -fAlphaGas);        112   G4complex H3 = std::pow(C3, -fAlphaGas);
113   G4complex H  = H2 * H3;                         113   G4complex H  = H2 * H3;
114                                                   114 
115   G4complex Z1 = GetMediumComplexFZ(energy, ga    115   G4complex Z1 = GetMediumComplexFZ(energy, gamma, varAngle);
116   G4complex Z2 = GetPlateComplexFZ(energy, gam    116   G4complex Z2 = GetPlateComplexFZ(energy, gamma, varAngle);
117   G4complex Z3 = GetGasComplexFZ(energy, gamma    117   G4complex Z3 = GetGasComplexFZ(energy, gamma, varAngle);
118                                                   118 
119   G4complex R = (Z1 - Z2) * (Z1 - Z2) * (1. -     119   G4complex R = (Z1 - Z2) * (Z1 - Z2) * (1. - H2 * H) +
120                 (Z2 - Z3) * (Z2 - Z3) * (1. -     120                 (Z2 - Z3) * (Z2 - Z3) * (1. - H3) +
121                 2. * (Z1 - Z2) * (Z2 - Z3) * H    121                 2. * (Z1 - Z2) * (Z2 - Z3) * H2 * (1. - H3);
122                                                   122 
123   result = 2.0 * std::real(R) * (varAngle * en    123   result = 2.0 * std::real(R) * (varAngle * energy / hbarc / hbarc);
124                                                   124 
125   return result;                                  125   return result;
126 }                                                 126 }
127                                                   127 
128 //////////////////////////////////////////////    128 ////////////////////////////////////////////////////////////////////////
129 // Calculates formation zone for external medi    129 // Calculates formation zone for external medium. Omega is energy !!!
130 G4double G4StrawTubeXTRadiator::GetMediumForma    130 G4double G4StrawTubeXTRadiator::GetMediumFormationZone(G4double omega,
131                                                   131                                                        G4double gamma,
132                                                   132                                                        G4double varAngle)
133 {                                                 133 {
134   G4double cof, lambda;                           134   G4double cof, lambda;
135   lambda = 1.0 / gamma / gamma + varAngle + fS    135   lambda = 1.0 / gamma / gamma + varAngle + fSigma3 / omega / omega;
136   cof    = 2.0 * hbarc / omega / lambda;          136   cof    = 2.0 * hbarc / omega / lambda;
137   return cof;                                     137   return cof;
138 }                                                 138 }
139                                                   139 
140 //////////////////////////////////////////////    140 ////////////////////////////////////////////////////////////////////////
141 // Calculates complex formation zone for exter    141 // Calculates complex formation zone for external medium. Omega is energy !!!
142 G4complex G4StrawTubeXTRadiator::GetMediumComp    142 G4complex G4StrawTubeXTRadiator::GetMediumComplexFZ(G4double omega,
143                                                   143                                                     G4double gamma,
144                                                   144                                                     G4double varAngle)
145 {                                                 145 {
146   G4double cof, length, delta, real_v, image_v    146   G4double cof, length, delta, real_v, image_v;
147                                                   147 
148   length = 0.5 * GetMediumFormationZone(omega,    148   length = 0.5 * GetMediumFormationZone(omega, gamma, varAngle);
149   delta  = length * GetMediumLinearPhotoAbs(om    149   delta  = length * GetMediumLinearPhotoAbs(omega);
150   cof    = 1.0 / (1.0 + delta * delta);           150   cof    = 1.0 / (1.0 + delta * delta);
151                                                   151 
152   real_v  = length * cof;                         152   real_v  = length * cof;
153   image_v = real_v * delta;                       153   image_v = real_v * delta;
154                                                   154 
155   G4complex zone(real_v, image_v);                155   G4complex zone(real_v, image_v);
156   return zone;                                    156   return zone;
157 }                                                 157 }
158                                                   158 
159 //////////////////////////////////////////////    159 ////////////////////////////////////////////////////////////////////////
160 // Computes matrix of Sandia photo absorption     160 // Computes matrix of Sandia photo absorption cross section coefficients for
161 // medium material                                161 // medium material
162 void G4StrawTubeXTRadiator::ComputeMediumPhoto    162 void G4StrawTubeXTRadiator::ComputeMediumPhotoAbsCof()
163 {                                                 163 {
164   const G4MaterialTable* theMaterialTable = G4    164   const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
165   const G4Material* mat                   = (*    165   const G4Material* mat                   = (*theMaterialTable)[fMatIndex3];
166   fMediumPhotoAbsCof                      = ma    166   fMediumPhotoAbsCof                      = mat->GetSandiaTable();
167 }                                                 167 }
168                                                   168 
169 //////////////////////////////////////////////    169 //////////////////////////////////////////////////////////////////////
170 // Returns the value of linear photo absorptio    170 // Returns the value of linear photo absorption coefficient (in reciprocal
171 // length) for medium for given energy of X-ra    171 // length) for medium for given energy of X-ray photon omega
172 G4double G4StrawTubeXTRadiator::GetMediumLinea    172 G4double G4StrawTubeXTRadiator::GetMediumLinearPhotoAbs(G4double omega)
173 {                                                 173 {
174   G4double omega2, omega3, omega4;                174   G4double omega2, omega3, omega4;
175                                                   175 
176   omega2 = omega * omega;                         176   omega2 = omega * omega;
177   omega3 = omega2 * omega;                        177   omega3 = omega2 * omega;
178   omega4 = omega2 * omega2;                       178   omega4 = omega2 * omega2;
179                                                   179 
180   const G4double* SandiaCof =                     180   const G4double* SandiaCof =
181     fMediumPhotoAbsCof->GetSandiaCofForMateria    181     fMediumPhotoAbsCof->GetSandiaCofForMaterial(omega);
182                                                   182 
183   G4double cross = SandiaCof[0] / omega + Sand    183   G4double cross = SandiaCof[0] / omega + SandiaCof[1] / omega2 +
184                    SandiaCof[2] / omega3 + San    184                    SandiaCof[2] / omega3 + SandiaCof[3] / omega4;
185   return cross;                                   185   return cross;
186 }                                                 186 }
187                                                   187