Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4RegularXTRadiator.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4RegularXTRadiator.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4RegularXTRadiator.cc (Version 3.0)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26                                                   
 27 #include "G4RegularXTRadiator.hh"                 
 28                                                   
 29 #include "G4Gamma.hh"                             
 30 #include "G4PhysicalConstants.hh"                 
 31                                                   
 32 //////////////////////////////////////////////    
 33 // Constructor, destructor                        
 34 G4RegularXTRadiator::G4RegularXTRadiator(G4Log    
 35                                          G4Mat    
 36                                          G4Mat    
 37                                          G4dou    
 38                                          const    
 39   : G4VXTRenergyLoss(anEnvelope, foilMat, gasM    
 40 {                                                 
 41   G4cout << "Regular X-ray TR radiator EM proc    
 42                                                   
 43   // Build energy and angular integral spectra    
 44   // a radiator                                   
 45                                                   
 46   fAlphaPlate = 10000;                            
 47   fAlphaGas   = 1000;                             
 48   G4cout << "fAlphaPlate = " << fAlphaPlate <<    
 49          << G4endl;                               
 50 }                                                 
 51                                                   
 52 //////////////////////////////////////////////    
 53 G4RegularXTRadiator::~G4RegularXTRadiator() =     
 54                                                   
 55 void G4RegularXTRadiator::ProcessDescription(s    
 56 {                                                 
 57   out << "Simulation of X-ray transition radia    
 58          "relativistic charged particles cross    
 59          "two materials. Thicknesses of plates    
 60 }                                                 
 61                                                   
 62 //////////////////////////////////////////////    
 63 G4double G4RegularXTRadiator::SpectralXTRdEdx(    
 64 {                                                 
 65   G4double result, sum = 0., tmp, cof1, cof2,     
 66   G4double aMa, bMb, sigma, dump;                 
 67   G4int k, kMax, kMin;                            
 68                                                   
 69   aMa   = fPlateThick * GetPlateLinearPhotoAbs    
 70   bMb   = fGasThick * GetGasLinearPhotoAbs(ene    
 71   sigma = 0.5 * (aMa + bMb);                      
 72   dump  = std::exp(-fPlateNumber * sigma);        
 73   if(verboseLevel > 2)                            
 74     G4cout << " dump = " << dump << G4endl;       
 75   cofPHC = 4 * pi * hbarc;                        
 76   tmp    = (fSigma1 - fSigma2) / cofPHC / ener    
 77   cof1   = fPlateThick * tmp;                     
 78   cof2   = fGasThick * tmp;                       
 79                                                   
 80   cofMin = energy * (fPlateThick + fGasThick)     
 81   cofMin += (fPlateThick * fSigma1 + fGasThick    
 82   cofMin /= cofPHC;                               
 83                                                   
 84   theta2 = cofPHC / (energy * (fPlateThick + f    
 85                                                   
 86   kMin = G4int(cofMin);                           
 87   if(cofMin > kMin)                               
 88     kMin++;                                       
 89                                                   
 90   kMax = kMin + 49;                               
 91                                                   
 92   if(verboseLevel > 2)                            
 93   {                                               
 94     G4cout << cof1 << "     " << cof2 << "        
 95     G4cout << "kMin = " << kMin << ";    kMax     
 96   }                                               
 97   for(k = kMin; k <= kMax; ++k)                   
 98   {                                               
 99     tmp    = pi * fPlateThick * (k + cof2) / (    
100     result = (k - cof1) * (k - cof1) * (k + co    
101     if(k == kMin && kMin == G4int(cofMin))        
102     {                                             
103       sum +=                                      
104         0.5 * std::sin(tmp) * std::sin(tmp) *     
105     }                                             
106     else                                          
107     {                                             
108       sum += std::sin(tmp) * std::sin(tmp) * s    
109     }                                             
110     theta2k = std::sqrt(theta2 * std::abs(k -     
111                                                   
112     if(verboseLevel > 2)                          
113     {                                             
114       G4cout << k << "   " << theta2k << "        
115              << std::sin(tmp) * std::sin(tmp)     
116              << "      " << sum << G4endl;        
117     }                                             
118   }                                               
119   result = 2 * (cof1 + cof2) * (cof1 + cof2) *    
120   result *= (1 - dump + 2 * dump * fPlateNumbe    
121                                                   
122   return result;                                  
123 }                                                 
124                                                   
125 //////////////////////////////////////////////    
126 // Approximation for radiator interference fac    
127 // fully Regular radiator. The plate and gas g    
128 // The mean values of the plate and gas gap th    
129 // are supposed to be about XTR formation zone    
130 // mean absorption length of XTR photons in co    
131                                                   
132 G4double G4RegularXTRadiator::GetStackFactor(G    
133                                              G    
134 {                                                 
135   // some gamma (10000/1000) like algorithm       
136                                                   
137   G4double result, Za, Zb, Ma, Mb;                
138                                                   
139   Za = GetPlateFormationZone(energy, gamma, va    
140   Zb = GetGasFormationZone(energy, gamma, varA    
141                                                   
142   Ma = GetPlateLinearPhotoAbs(energy);            
143   Mb = GetGasLinearPhotoAbs(energy);              
144                                                   
145   G4complex Ca(1.0 + 0.5 * fPlateThick * Ma /     
146                fPlateThick / Za / fAlphaPlate)    
147   G4complex Cb(1.0 + 0.5 * fGasThick * Mb / fA    
148                fGasThick / Zb / fAlphaGas);       
149                                                   
150   G4complex Ha = std::pow(Ca, -fAlphaPlate);      
151   G4complex Hb = std::pow(Cb, -fAlphaGas);        
152   G4complex H  = Ha * Hb;                         
153                                                   
154   G4complex F1 = (1.0 - Ha) * (1.0 - Hb) / (1.    
155                                                   
156   G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb     
157                  (1.0 - std::pow(H, fPlateNumb    
158                                                   
159   G4complex R = (F1 + F2) * OneInterfaceXTRdEd    
160                                                   
161   result = 2.0 * std::real(R);                    
162                                                   
163   return result;                                  
164 }                                                 
165