Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4GammaXTRadiator.cc,v 1.1 2002/01/22 15:22:53 grichine Exp $ >> 25 // GEANT4 tag $Name: geant4-04-01 $ >> 26 // >> 27 >> 28 #include "g4std/complex" 26 29 27 #include "G4GammaXTRadiator.hh" 30 #include "G4GammaXTRadiator.hh" >> 31 #include "Randomize.hh" 28 32 29 #include "G4Gamma.hh" 33 #include "G4Gamma.hh" 30 34 31 ////////////////////////////////////////////// 35 //////////////////////////////////////////////////////////////////////////// >> 36 // 32 // Constructor, destructor 37 // Constructor, destructor 33 G4GammaXTRadiator::G4GammaXTRadiator(G4Logical << 38 34 G4double << 39 G4GammaXTRadiator::G4GammaXTRadiator(G4LogicalVolume* anEnvelope, 35 G4Materia << 40 G4double alphaPlate, >> 41 G4double alphaGas, >> 42 G4Material* foilMat,G4Material* gasMat, 36 G4double 43 G4double a, G4double b, G4int n, 37 const G4S << 44 const G4String& processName) : 38 : G4VXTRenergyLoss(anEnvelope, foilMat, gasM << 45 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName) 39 { 46 { 40 G4cout << "Gamma distributed X-ray TR radiat << 47 G4cout<<"Gammma distributed X-ray TR radiator model is called"<<G4endl ; 41 48 42 // Build energy and angular integral spectra 49 // Build energy and angular integral spectra of X-ray TR photons from 43 // a radiator 50 // a radiator 44 51 45 fAlphaPlate = alphaPlate; << 52 fAlphaPlate = alphaPlate ; 46 fAlphaGas = alphaGas; << 53 fAlphaGas = alphaGas ; 47 G4cout << "fAlphaPlate = " << fAlphaPlate << << 54 G4cout<<"fAlphaPlate = "<<fAlphaPlate<<" ; fAlphaGas = "<<fAlphaGas<<G4endl ; 48 << G4endl; << 55 >> 56 BuildTable() ; 49 } 57 } 50 58 51 ////////////////////////////////////////////// 59 /////////////////////////////////////////////////////////////////////////// 52 G4GammaXTRadiator::~G4GammaXTRadiator() = defa << 53 60 54 void G4GammaXTRadiator::ProcessDescription(std << 61 G4GammaXTRadiator::~G4GammaXTRadiator() 55 { 62 { 56 out << 63 ; 57 << "Rough approximation describing a radia << 58 "radiation.\n" << 59 "Thicknesses of plates and gas gaps are << 60 "description.\n"; << 61 } 64 } 62 65 >> 66 >> 67 63 ////////////////////////////////////////////// 68 /////////////////////////////////////////////////////////////////////////// >> 69 // 64 // Rough approximation for radiator interferen 70 // Rough approximation for radiator interference factor for the case of 65 // fully GamDistr radiator. The plate and gas << 71 // fully GamDistr radiator. The plate and gas gap thicknesses are distributed 66 // according to exponent. The mean values of t << 72 // according to exponent. The mean values of the plate and gas gap thicknesses 67 // are supposed to be about XTR formation zone << 73 // are supposed to be about XTR formation zones but much less than 68 // mean absorption length of XTR photons in co << 74 // mean absorption length of XTR photons in coresponding material. 69 G4double G4GammaXTRadiator::GetStackFactor(G4d << 75 70 G4d << 76 G4double >> 77 G4GammaXTRadiator::GetStackFactor( G4double energy, >> 78 G4double gamma, G4double varAngle ) 71 { 79 { 72 G4double result, Za, Zb, Ma, Mb; << 80 G4double result, Za, Zb, Ma, Mb ; >> 81 >> 82 Za = GetPlateFormationZone(energy,gamma,varAngle) ; >> 83 Zb = GetGasFormationZone(energy,gamma,varAngle) ; 73 84 74 Za = GetPlateFormationZone(energy, gamma, va << 85 Ma = GetPlateLinearPhotoAbs(energy) ; 75 Zb = GetGasFormationZone(energy, gamma, varA << 86 Mb = GetGasLinearPhotoAbs(energy) ; 76 87 77 Ma = GetPlateLinearPhotoAbs(energy); << 78 Mb = GetGasLinearPhotoAbs(energy); << 79 88 80 G4complex Ca(1.0 + 0.5 * fPlateThick * Ma / << 89 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate) ; 81 fPlateThick / Za / fAlphaPlate) << 90 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas) ; 82 G4complex Cb(1.0 + 0.5 * fGasThick * Mb / fA << 83 fGasThick / Zb / fAlphaGas); << 84 91 85 G4complex Ha = std::pow(Ca, -fAlphaPlate); << 92 G4complex Ha = G4std::pow(Ca,-fAlphaPlate) ; 86 G4complex Hb = std::pow(Cb, -fAlphaGas); << 93 G4complex Hb = G4std::pow(Cb,-fAlphaGas) ; 87 G4complex H = Ha * Hb; << 94 G4complex H = Ha*Hb ; 88 95 89 G4complex F1 = (1.0 - Ha) * (1.0 - Hb) / (1. << 96 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H) >> 97 * G4double(fPlateNumber) ; 90 98 91 G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb << 99 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H) 92 (1.0 - std::pow(H, fPlateNumb << 100 * (1.0 - G4std::pow(H,fPlateNumber)) ; 93 101 94 G4complex R = (F1 + F2) * OneInterfaceXTRdEd << 102 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle) ; 95 103 96 result = 2.0 * std::real(R); << 104 result = 2.0*G4std::real(R) ; 97 << 105 98 return result; << 106 return result ; 99 } 107 } >> 108 >> 109 >> 110 // >> 111 // >> 112 //////////////////////////////////////////////////////////////////////////// >> 113 >> 114 >> 115 >> 116 >> 117 >> 118 >> 119 >> 120 100 121